MXene molecular sieving membranes for highly efficient gas separation

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/3192
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/3222
dc.contributor.author Ding, Li
dc.contributor.author Wei, Yanying
dc.contributor.author Li, Libo
dc.contributor.author Zhang, Tao
dc.contributor.author Wang, Haihui
dc.contributor.author Xue, Jian
dc.contributor.author Ding, Liang-Xin
dc.contributor.author Wang, Suqing
dc.contributor.author Caro, Jürgen
dc.contributor.author Gogotsi, Yury
dc.date.accessioned 2018-04-27T12:18:17Z
dc.date.available 2018-04-27T12:18:17Z
dc.date.issued 2018
dc.identifier.citation Ding, L.; Wei, Y.; Li, L.; Zhang, T.; Wang, H. et al.: MXene molecular sieving membranes for highly efficient gas separation. In: Nature Communications 9 (2018), Nr. 1, 155. DOI: https://doi.org/10.1038/s41467-017-02529-6
dc.description.abstract Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H2 permeability >2200 Barrer and H2/CO2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation. eng
dc.language.iso eng
dc.publisher London : Nature Publishing Group
dc.relation.ispartofseries Nature Communications 9 (2018), Nr. 1
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject nanosheet eng
dc.subject energy efficiency eng
dc.subject manufacturing eng
dc.subject mass transport eng
dc.subject membrane eng
dc.subject molecular analysis eng
dc.subject permeability eng
dc.subject separation eng
dc.subject sieving eng
dc.subject simulation eng
dc.subject Article eng
dc.subject controlled study eng
dc.subject gas eng
dc.subject infrared spectroscopy eng
dc.subject membrane eng
dc.subject membrane permeability eng
dc.subject molecular dynamics eng
dc.subject molecular weight eng
dc.subject mxene membrane eng
dc.subject quantitative analysis eng
dc.subject scanning electron microscopy eng
dc.subject surface property eng
dc.subject.ddc 500 | Naturwissenschaften ger
dc.title MXene molecular sieving membranes for highly efficient gas separation
dc.type Article
dc.type Text
dc.relation.issn 2041-1723
dc.relation.doi https://doi.org/10.1038/s41467-017-02529-6
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 9
dc.bibliographicCitation.firstPage 155
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken