Compact generation in partially ordered sets

Loading...
Thumbnail Image
Date
1987
Volume
42
Issue
1
Journal
Journal of the Australian Mathematical Society 42 (1987), Nr. 1
Series Titel
Book Title
Publisher
Cambridge : Cambridge University Press
Abstract

Several` “classical” results on algebraic complete lattices extend to algebraic posets and, more generally, to so called compactly generated posets; but, of course, there may arise difficulties in the absence of certain joins or meets. For example, the property of weak atomicity turns out to be valid in all Dedekind complete compactly generated posets, but not in arbitrary algebraic posets. The compactly generated posets are, up to isomorphism, the inductive centralized systems, where a system of sets is called centralized if it contains all point closures. A similar representation theorem holds for algebraic posets; it is known that every algebraic poset is isomorphic to the system i(Q) of all directed lower sets in some poset Q; we show that only those posets P which satisfy the ascending chain condition are isomorphic to their own “up-completion” i(P). We also touch upon a few structural aspects such as the formation of direct sums, products and substructures. The note concludes with several applications of a generalized version of the Birkhoff Frink decomposition theorem for algebraic lattices. © 1987, Australian Mathematical Society. All rights reserved.

Description
Keywords
License
Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.