Microstructure-based modeling of the impact response of a biomedical niobium-zirconium alloy

Show simple item record

dc.identifier.uri http://dx.doi.org/10.15488/2329
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/2355
dc.contributor.author Onal, Orkun
dc.contributor.author Bal, Burak
dc.contributor.author Toker, S. Mine
dc.contributor.author Mirzajanzadeh, Morad
dc.contributor.author Canadinc, Demircan
dc.contributor.author Maier, Hans Jürgen
dc.date.accessioned 2017-11-17T09:49:37Z
dc.date.available 2017-11-17T09:49:37Z
dc.date.issued 2014
dc.identifier.citation Onal, O.; Bal, B.; Toker, S.M.; Mirzajanzadeh, M.; Canadinc, D. et al.: Microstructure-based modeling of the impact response of a biomedical niobium-zirconium alloy. In: Journal of Materials Research 29 (2014), Nr. 10, S. 1123-1134. DOI: https://doi.org/10.1557/jmr.2014.105
dc.description.abstract This article presents a new multiscale modeling approach proposed to predict the impact response of a biomedical niobium-zirconium alloy by incorporating both geometric and microstructural aspects. Specifically, the roles of both anisotropy and geometry-based distribution of stresses and strains upon loading were successfully taken into account by incorporating a proper multiaxial material flow rule obtained from crystal plasticity simulations into the finite element (FE) analysis. The simulation results demonstrate that the current approach, which defines a hardening rule based on the location-dependent equivalent stresses and strains, yields more reliable results as compared with the classical FE approach, where the hardening rule is based on the experimental uniaxial deformation response of the material. This emphasizes the need for proper coupling of crystal plasticity and FE analysis for the sake of reliable predictions, and the approach presented herein constitutes an efficient guideline for the design process of dental and orthopedic implants that are subject to impact loading in service. Copyright © Materials Research Society 2014. eng
dc.language.iso eng
dc.publisher Cambridge University Press
dc.relation.ispartofseries Journal of Materials Research 29 (2014), Nr. 10
dc.rights Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
dc.subject biomedical eng
dc.subject fracture eng
dc.subject texture eng
dc.subject Dental prostheses eng
dc.subject Elasticity eng
dc.subject Finite element method eng
dc.subject Fracture eng
dc.subject Niobium alloys eng
dc.subject Plasticity eng
dc.subject Structural design eng
dc.subject Textures eng
dc.subject Zirconium alloys eng
dc.subject Textures eng
dc.subject biomedical eng
dc.subject Crystal plasticity eng
dc.subject Location dependents eng
dc.subject Microstructural aspects eng
dc.subject Microstructure-based model eng
dc.subject Multi-scale Modeling eng
dc.subject Orthopedic implant eng
dc.subject Uniaxial deformation eng
dc.subject Impact response eng
dc.subject Loading eng
dc.subject Fracture eng
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau ger
dc.title Microstructure-based modeling of the impact response of a biomedical niobium-zirconium alloy
dc.type Article
dc.type Text
dc.relation.issn 0884-2914
dc.relation.doi https://doi.org/10.1557/jmr.2014.105
dc.bibliographicCitation.issue 10
dc.bibliographicCitation.volume 29
dc.bibliographicCitation.firstPage 1123
dc.bibliographicCitation.lastPage 1134
dc.description.version publishedVersion
tib.accessRights frei zug�nglich

Files in this item

This item appears in the following Collection(s):

Show simple item record


Search the repository


My Account

Usage Statistics