Extending the Prym map to toroidal compactifications of the moduli space of abelian varieties (with an appendix by Mathieu Dutour Sikiric)

Show simple item record

dc.identifier.uri http://dx.doi.org/10.15488/2312
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/2338
dc.contributor.author Casalaina-Martin, Sebastian
dc.contributor.author Grushevsky, Samuel
dc.contributor.author Hulek, Klaus
dc.contributor.author Laza, Radu
dc.contributor.author Dutour Sikiric, M.
dc.date.accessioned 2017-11-17T09:26:04Z
dc.date.available 2017-11-17T09:26:04Z
dc.date.issued 2017
dc.identifier.citation Casalaina-Martin, S.; Grushevsky, S.; Hulek, K.; Laza, R.; Dutour Sikiric, M.: Extending the Prym map to toroidal compactifications of the moduli space of abelian varieties (with an appendix by Mathieu Dutour Sikiric). In: Journal of the European Mathematical Society 19 (2017), Nr. 3, S. 659-723. DOI: https://doi.org/10.4171/JEMS/678
dc.description.abstract The main purpose of this paper is to present a conceptual approach to understanding the extension of the Prym map from the space of admissible double covers of stable curves to different toroidal compactifications of the moduli space of principally polarized abelian varieties. By separating the combinatorial problems from the geometric aspects we can reduce this to the computation of certain monodromy cones. In this way we not only shed new light on the extension results of Alexeev, Birkenhake, Hulek, and Vologodsky for the second Voronoi toroidal compactification, but we also apply this to other toroidal compactifications, in particular the perfect cone compactification, for which we obtain a combinatorial characterization of the indeterminacy locus, as well as a geometric description up to codimension six, and an explicit toroidal resolution of the Prym map up to codimension four. © 2017 European Mathematical Society. eng
dc.language.iso eng
dc.publisher Zürich : European Mathematical Society Publishing House
dc.relation.ispartofseries Journal of the European Mathematical Society 19 (2017), Nr. 3
dc.rights Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
dc.subject Abelian varieties eng
dc.subject Moduli eng
dc.subject Period maps eng
dc.subject Prym varieties eng
dc.subject.ddc 510 | Mathematik ger
dc.title Extending the Prym map to toroidal compactifications of the moduli space of abelian varieties (with an appendix by Mathieu Dutour Sikiric)
dc.type article
dc.type Text
dc.relation.issn 1435-9855
dc.relation.doi https://doi.org/10.4171/JEMS/678
dc.bibliographicCitation.issue 3
dc.bibliographicCitation.volume 19
dc.bibliographicCitation.firstPage 659
dc.bibliographicCitation.lastPage 723
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Files in this item

This item appears in the following Collection(s):

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics