Counting imaginary quadratic points via universal torsors

Show simple item record

dc.identifier.uri Derenthal, U. Frei, C. 2017-11-17T08:34:55Z 2017-11-17T08:34:55Z 2014
dc.identifier.citation Derenthal, U.; Frei, C.: Counting imaginary quadratic points via universal torsors. In: Compositio Mathematica 150 (2014), Nr. 10, S. 1631-1678. DOI:
dc.description.abstract A conjecture of Manin predicts the distribution of rational points on Fano varieties. We provide a framework for proofs of Manin's conjecture for del Pezzo surfaces over imaginary quadratic fields, using universal torsors. Some of our tools are formulated over arbitrary number fields. As an application, we prove Manin's conjecture over imaginary quadratic fields K for the quartic del Pezzo surface S of singularity type A3 with five lines given in double-struck PK4 by the equations x0x1 - x2x3 = x0x3 + x1x3 + x2x4 = 0. © Foundation Compositio Mathematica 2014. eng
dc.language.iso eng
dc.publisher Cambridge : Cambridge University Press
dc.relation.ispartofseries Compositio Mathematica 150 (2014), Nr. 10
dc.rights Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
dc.subject Del pezzo surfaces eng
dc.subject Imaginary quadratic fields eng
dc.subject Manin's conjecture eng
dc.subject Universal torsors eng
dc.subject.ddc 510 | Mathematik ger
dc.title Counting imaginary quadratic points via universal torsors eng
dc.type article
dc.type Text
dc.relation.issn 0010-437X
dc.bibliographicCitation.issue 10
dc.bibliographicCitation.volume 150
dc.bibliographicCitation.firstPage 1631
dc.bibliographicCitation.lastPage 1678
dc.description.version publishedVersion
tib.accessRights frei zug�nglich

Files in this item

This item appears in the following Collection(s):

Show simple item record


Search the repository


My Account

Usage Statistics