Solid-State NMR to Study Translational Li Ion Dynamics in Solids with Low-Dimensional Diffusion Pathways

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/2240
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/2266
dc.contributor.author Volgmann, Kai
dc.contributor.author Epp, Viktor
dc.contributor.author Langer, Julia
dc.contributor.author Stanje, Bernhard
dc.contributor.author Heine, Jessica
dc.contributor.author Nakhal, Suliman
dc.contributor.author Lerch, Martin
dc.contributor.author Wilkening, Martin
dc.contributor.author Heitjans, Paul
dc.date.accessioned 2017-11-10T17:19:21Z
dc.date.available 2018-07-01T22:05:14Z
dc.date.issued 2017
dc.identifier.citation Volgmann, K.; Epp, V.; Langer, J.; Stanje, B.; Heine, J. et al.: Solid-State NMR to Study Translational Li Ion Dynamics in Solids with Low-Dimensional Diffusion Pathways. In: Zeitschrift für Physikalische Chemie 231 (2017), S. 1215-1241. DOI: https://doi.org/10.1515/zpch-2017-0952
dc.description.abstract Fundamental research on lithium ion dynamics in solids is important to develop functional materials for, e.g. sensors or energy storage systems. In many cases a comprehensive understanding is only possible if experimental data are compared with predictions from diffusion models. Nuclear magnetic resonance (NMR), besides other techniques such as mass tracer or conductivity measurements, is known as a versatile tool to investigate ion dynamics. Among the various time-domain NMR techniques, NMR relaxometry, in particular, serves not only to measure diffusion parameters, such as jump rates and activation energies, it is also useful to collect information on the dimensionality of the underlying diffusion process. The latter is possible if both the temperature and, even more important, the frequency dependence of the diffusion-induced relaxation rates of actually polycrystalline materials is analyzed. Here we present some recent systematic relaxometry case studies using model systems that exhibit spatially restricted Li ion diffusion. Whenever possible we compare our results with data from other techniques as well as current relaxation models developed for 2D and 1D diffusion. As an example, 2D ionic motion has been verified for the hexagonal form of LiBH4; in the high-temperature limit the diffusion-induced 7Li NMR spin-lattice relaxation rates follow a logarithmic frequency dependence as is expected from models introduced for 2D diffusion. A similar behavior has been found for LixNbS2. In Li12Si7 a quasi-1D diffusion process seems to be present that is characterized by a square root frequency dependence and a temperature behavior of the 7Li NMR spin-lattice relaxation rates as predicted. Most likely, parts of the Li ions diffuse along the Si5 rings that form chains in the Zintl phase. © 2017 Walter de Gruyter GmbH, Berlin/Boston. eng
dc.language.iso eng
dc.publisher Berlin : Walter de Gruyter
dc.relation.ispartofseries Zeitschrift für Physikalische Chemie 231 (2017)
dc.rights Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.subject diffusion eng
dc.subject dimensionality eng
dc.subject lithium eng
dc.subject solid-state NMR eng
dc.subject spin-lattice relaxation eng
dc.subject.ddc 540 | Chemie ger
dc.subject.ddc 530 | Physik ger
dc.title Solid-State NMR to Study Translational Li Ion Dynamics in Solids with Low-Dimensional Diffusion Pathways eng
dc.type Article
dc.type Text
dc.relation.issn 09429352
dc.relation.doi https://doi.org/10.1515/zpch-2017-0952
dc.bibliographicCitation.volume 231
dc.bibliographicCitation.firstPage 1215
dc.bibliographicCitation.lastPage 1241
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken