Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/1999
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/2024
dc.contributor.author Abbott, B.P.
dc.contributor.author Abbott, R.
dc.contributor.author Abbott, T.D.
dc.contributor.author Abernathy, M.R.
dc.contributor.author Acernese, F.
dc.contributor.author Ackley, K.
dc.contributor.author et al.
dc.contributor.author LIGO Scientific Collaboration
dc.contributor.author Virgo Collaboration
dc.date.accessioned 2017-10-10T07:51:09Z
dc.date.available 2017-10-10T07:51:09Z
dc.date.issued 2016
dc.identifier.citation Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F. et al. (LIGO Scientific Collaboration and Virgo Collaboration): Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. In: Physical Review X 6 (2016), Nr. 4, 41014. DOI: https://doi.org/10.1103/PhysRevX.6.041014
dc.description.abstract This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-onebody (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35(-3)(+5) M-circle dot and 30(-4)(+3) M-circle dot (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate < 0.65 and a secondary spin estimate < 0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted. eng
dc.language.iso eng
dc.publisher College Park : American Physical Society
dc.relation.ispartofseries Physical Review X 6 (2016), Nr. 4
dc.rights CC BY 3.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/3.0/
dc.subject Schwarzschild black-hole eng
dc.subject gravitational-radiation eng
dc.subject compact binaries eng
dc.subject.ddc 530 | Physik ger
dc.title Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model
dc.type Article
dc.type Text
dc.relation.issn 2160-3308
dc.relation.doi https://doi.org/10.1103/PhysRevX.6.041014
dc.bibliographicCitation.issue 4
dc.bibliographicCitation.volume 6
dc.bibliographicCitation.firstPage 41014
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken