Scale-dependent diffusion anisotropy in nanoporous silicon

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/1954
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/1979
dc.contributor.author Kondrashova, Daria
dc.contributor.author Lauerer, Alexander
dc.contributor.author Mehlhorn, Dirk
dc.contributor.author Jobic, Hervé
dc.contributor.author Feldhoff, Armin
dc.contributor.author Thommes, Matthias
dc.contributor.author Chakraborty, Dipanjan
dc.contributor.author Gommes, Cedric
dc.contributor.author Zecevic, Jovana
dc.contributor.author de Jongh, Petra
dc.contributor.author Bunde, Armin
dc.contributor.author Kärger, Jörg
dc.contributor.author Valiullin, Rustem
dc.date.accessioned 2017-09-22T12:52:59Z
dc.date.available 2017-09-22T12:52:59Z
dc.date.issued 2017
dc.identifier.citation Kondrashova, D.; Lauerer, A.; Mehlhorn, D.; Jobic, H.; Feldhoff, A. et al.: Scale-dependent diffusion anisotropy in nanoporous silicon. In: Scientific Reports 7 (2017), No. 40207. DOI: https://doi.org/10.1038/srep40207
dc.description.abstract Nanoporous silicon produced by electrochemical etching of highly B-doped p-type silicon wafers can be prepared with tubular pores imbedded in a silicon matrix. Such materials have found many technological applications and provide a useful model system for studying phase transitions under confinement. This paper reports a joint experimental and simulation study of diffusion in such materials, covering displacements from molecular dimensions up to tens of micrometers with carefully selected probe molecules. In addition to mass transfer through the channels, diffusion (at much smaller rates) is also found to occur in directions perpendicular to the channels, thus providing clear evidence of connectivity. With increasing displacements, propagation in both axial and transversal directions is progressively retarded, suggesting a scale-dependent, hierarchical distribution of transport resistances ("constrictions" in the channels) and of shortcuts (connecting "bridges") between adjacent channels. The experimental evidence from these studies is confirmed by molecular dynamics (MD) simulation in the range of atomistic displacements and rationalized with a simple model of statistically distributed "constrictions" and "bridges" for displacements in the micrometer range via dynamic Monte Carlo (DMC) simulation. Both ranges are demonstrated to be mutually transferrable by DMC simulations based on the pore space topology determined by electron tomography. eng
dc.description.sponsorship DFG/BU 534/22
dc.description.sponsorship DFG7KA 953/30
dc.description.sponsorship IUPAC
dc.language.iso eng
dc.publisher London : Nature Publishing Group
dc.relation.ispartofseries Scientific Reports 7 (2017)
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject.ddc 540 | Chemie ger
dc.title Scale-dependent diffusion anisotropy in nanoporous silicon eng
dc.type Article
dc.type Text
dc.relation.issn 20452322
dc.relation.doi https://doi.org/10.1038/srep40207
dc.bibliographicCitation.volume 7
dc.bibliographicCitation.firstPage 40207
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken