Marker Minerals in Volcanics and Xenoliths—An Approach to Categorize the Inferred Magmatic Rocks Underneath the Present-Day Volcanic Landscape of Tenerife, Spain (NW African Rare Mineral Province)

Show simple item record

dc.identifier.uri http://dx.doi.org/10.15488/17254
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/17382
dc.contributor.author Dill, Harald Gerold
dc.contributor.author Rüsenberg, Kurt Anton
dc.date.accessioned 2024-04-30T06:27:00Z
dc.date.available 2024-04-30T06:27:00Z
dc.date.issued 2023
dc.identifier.citation Dill, H.G.; Rüsenberg, K.A.: Marker Minerals in Volcanics and Xenoliths—An Approach to Categorize the Inferred Magmatic Rocks Underneath the Present-Day Volcanic Landscape of Tenerife, Spain (NW African Rare Mineral Province). In: Minerals 13 (2023), Nr. 11, 1410. DOI: https://doi.org/10.3390/min13111410
dc.description.abstract A mineralogical mapping (terrain analysis) based on micro-mounts has been performed in the Archipelago of the Canary Islands, Spain. The rare elements Be, F, Li, Nb, Ta, Zr, Hf, and rare earth elements (REE) were investigated on the largest island of the Canary Islands Archipelago, Tenerife, Spain. This study forms a contribution to the metallogenetic evolution of the offshore area of the NW African Rare Mineral Province. The finds made at Tenerife were correlated by means of minero-stratigraphy with the adjacent islands La Gomera, Gran Canaria and Fuerteventura, where typical critical element host rocks, e.g., carbonatites, are exposed. At Tenerife, these hidden rock types are only indicated by a wealth of 128 compositional first-order marker minerals hosting Be, F, Zr, Nb, Ta, Zr, Hf, Li, Cs, Sn, W, Ti and REE plus Y and another 106 structural second-order marker minerals describing the geodynamic and morpho-structural evolution of Tenerife (Mn, Fe, Pb, U, Th, As, Sb, V, S, B, Cu, Zn, Mo, Au). Based upon the quantitative micro-mineralogical mapping of lithoclasts and mineralogical xenoliths (foid-bearing monzodiorite/gabbro, (nepheline) syenite, phonolite trachyte) in volcanic and volcaniclastic rocks, hidden intrusive/subvolcanic bodies can be delineated that are associated with contact-metasomatic, zeolitic and argillic alteration zones, as well as potential ore zones. Two potential types of deposits are determined. These are pegmatite-syenites with minor carbonatites bound to a series of agpaitic intrusive rocks that are genetically interlocked with rift zones and associated with a hotspot along a passive continental margin. Towards the east, the carbonatite/alkali magmatite ratio reverses at Fuerteventura in favor of carbonatites, while at Gran Canaria and La Gomera, shallow hypogene/supergene mineral associations interpreted as a marginal facies to Tenerife occur and a new REE discovery in APS minerals has been made. There are seven mineralizing processes different from each other and representative of a peculiar metallogenic process (given in brackets): Protostage 1 (rifting), stages 2a to 2d (differentiation of syenite–pegmatite), stages 3 to 4b (contact-metasomatic/hydrothermal mineralization), stages 5a to 5b (hydrothermal remobilization and zeolitization), stage 6 (shallow hypogene-supergene transition and kaolinization), and stage 7 (auto-hydrothermal-topomineralic mineralization). The prerequisites to successfully take this holistic approach in economic geology are a low maturity of the landscapes in the target area, a Cenozoic age of endogenous and exogenous processes amenable to sedimentological, geomorphological, volcano-tectonic and quantitative mineralogical investigations. The volcanic island’s mineralogical mapping is not primarily designed as a proper pre-well-site study on the Isle of Tenerife, but considered a reference study area for minero-stratigraphic inter-island correlation (land–land) and land–sea when investigating the seabed and seamounts around volcanic archipelagos along the passive margin, as exemplified by the NW African Craton and its metallogenic province. This unconventional exploration technique should also be tested for hotspot- and rift-related volcanic islands elsewhere on the globe for mineral commodities different from the ones under study. eng
dc.language.iso eng
dc.publisher Basel : MDPI
dc.relation.ispartofseries Minerals 13 (2023), Nr. 11
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject critical elements eng
dc.subject exploration eng
dc.subject hidden ore deposits eng
dc.subject mineralogy (micro-mounts) eng
dc.subject Tenerife, Spain eng
dc.subject.ddc 550 | Geowissenschaften
dc.title Marker Minerals in Volcanics and Xenoliths—An Approach to Categorize the Inferred Magmatic Rocks Underneath the Present-Day Volcanic Landscape of Tenerife, Spain (NW African Rare Mineral Province) eng
dc.type Article
dc.type Text
dc.relation.essn 2075-163X
dc.relation.doi https://doi.org/10.3390/min13111410
dc.bibliographicCitation.issue 11
dc.bibliographicCitation.volume 13
dc.bibliographicCitation.firstPage 1410
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Files in this item

This item appears in the following Collection(s):

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics