Gravitational-wave physics and astronomy in the 2020s and 2030s

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/16715
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/16842
dc.contributor.author Bailes, M.
dc.contributor.author Berger, B.K.
dc.contributor.author Brady, P.R.
dc.contributor.author Branchesi, M.
dc.contributor.author Danzmann, K.
dc.contributor.author Evans, M.
dc.contributor.author Holley-Bockelmann, K.
dc.contributor.author Iyer, B.R.
dc.contributor.author Kajita, T.
dc.contributor.author Katsanevas, S.
dc.contributor.author Kramer, M.
dc.contributor.author Lazzarini, A.
dc.contributor.author Lehner, L.
dc.contributor.author Losurdo, G.
dc.contributor.author Lück, H.
dc.contributor.author McClelland, D.E.
dc.contributor.author McLaughlin, M.A.
dc.contributor.author Punturo, M.
dc.contributor.author Ransom, S.
dc.contributor.author Raychaudhury, S.
dc.contributor.author Reitze, D.H.
dc.contributor.author Ricci, F.
dc.contributor.author Rowan, S.
dc.contributor.author Saito, Y.
dc.contributor.author Sanders, G.H.
dc.contributor.author Sathyaprakash, B.S.
dc.contributor.author Schutz, B.F.
dc.contributor.author Sesana, A.
dc.contributor.author Shinkai, H.
dc.contributor.author Siemens, X.
dc.contributor.author Shoemaker, D.H.
dc.contributor.author Thorpe, J.
dc.contributor.author van den Brand, J.F.J.
dc.contributor.author Vitale, S.
dc.date.accessioned 2024-03-21T10:56:54Z
dc.date.available 2024-03-21T10:56:54Z
dc.date.issued 2021
dc.identifier.citation Bailes, M.; Berger, B.K.; Brady, P.R.; Branchesi, M.; Danzmann, K. et al.: Gravitational-wave physics and astronomy in the 2020s and 2030s. In: Nature Reviews Physics 3 (2021), Nr. 5, S. 344-366. DOI: https://doi.org/10.1038/s42254-021-00303-8
dc.description.abstract The 100 years since the publication of Albert Einstein’s theory of general relativity saw significant development of the understanding of the theory, the identification of potential astrophysical sources of sufficiently strong gravitational waves and development of key technologies for gravitational-wave detectors. In 2015, the first gravitational-wave signals were detected by the two US Advanced LIGO instruments. In 2017, Advanced LIGO and the European Advanced Virgo detectors pinpointed a binary neutron star coalescence that was also seen across the electromagnetic spectrum. The field of gravitational-wave astronomy is just starting, and this Roadmap of future developments surveys the potential for growth in bandwidth and sensitivity of future gravitational-wave detectors, and discusses the science results anticipated to come from upcoming instruments. eng
dc.language.iso eng
dc.publisher London : Springer Nature
dc.relation.ispartofseries Nature Reviews Physics 3 (2021), Nr. 5
dc.rights CC BY 3.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/3.0/
dc.subject Gravitational effects eng
dc.subject Relativity eng
dc.subject Signal detection eng
dc.subject Albert Einstein eng
dc.subject Astrophysical sources eng
dc.subject Binary neutron stars eng
dc.subject Electromagnetic spectra eng
dc.subject General Relativity eng
dc.subject Gravitational wave detectors eng
dc.subject Gravitational-wave signals eng
dc.subject Key technologies eng
dc.subject Gravity waves eng
dc.subject.ddc 530 | Physik
dc.title Gravitational-wave physics and astronomy in the 2020s and 2030s eng
dc.type Article
dc.type Text
dc.relation.essn 2522-5820
dc.relation.doi https://doi.org/10.1038/s42254-021-00303-8
dc.bibliographicCitation.issue 5
dc.bibliographicCitation.volume 3
dc.bibliographicCitation.firstPage 344
dc.bibliographicCitation.lastPage 366
dc.description.version publishedVersion eng
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken