Colloidal pathways of amorphous calcium carbonate formation lead to distinct water environments and conductivity

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/16589
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/16716
dc.contributor.author Gindele, Maxim B.
dc.contributor.author Vinod-Kumar, Sanjay
dc.contributor.author Rochau, Johannes
dc.contributor.author Boemke, Daniel
dc.contributor.author Groß, Eduard
dc.contributor.author Redrouthu, Venkata SubbaRao
dc.contributor.author Gebauer, Denis
dc.contributor.author Mathies, Guinevere
dc.date.accessioned 2024-03-15T09:40:20Z
dc.date.available 2024-03-15T09:40:20Z
dc.date.issued 2024
dc.identifier.citation Gindele, M.B.; Vinod-Kumar, S.; Rochau, J.; Boemke, D.; Groß, E. et al.: Colloidal pathways of amorphous calcium carbonate formation lead to distinct water environments and conductivity. In: Nature Communications 15 (2024), Nr. 1, 80. DOI: https://doi.org/10.1038/s41467-023-44381-x
dc.description.abstract CaCO3 is the most abundant biomineral and a major constituent of incrustations arising from water hardness. Polycarboxylates play key roles in controlling mineralization. Herein, we present an analytical and spectroscopic study of polycarboxylate-stabilized amorphous CaCO3 (ACC) and its formation via a dense liquid precursor phase (DLP). Polycarboxylates facilitate pronounced, kinetic bicarbonate entrapment in the DLP. Since bicarbonate is destabilized in the solid state, DLP dehydration towards solid ACC necessitates the formation of locally calcium deficient sites, thereby inhibiting nucleation. Magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy of poly-aspartate-stabilized ACC reveals the presence of two distinct environments. The first contains immobile calcium and carbonate ions and structural water molecules, undergoing restricted, anisotropic motion. In the second environment, water molecules undergo slow, but isotropic motion. Indeed, conductive atomic force microscopy (C-AFM) reveals that ACC conducts electrical current, strongly suggesting that the mobile environment pervades the bulk of ACC, with dissolved hydroxide ions constituting the charge carriers. We propose that the distinct environments arise from colloidally stabilized interfaces of DLP nanodroplets, consistent with the pre-nucleation cluster (PNC) pathway. eng
dc.language.iso eng
dc.publisher [London] : Nature Publishing Group UK
dc.relation.ispartofseries Nature Communications 15 (2024), Nr. 1
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject aspartic acid eng
dc.subject bicarbonate eng
dc.subject calcium eng
dc.subject calcium carbonate eng
dc.subject hydroxide eng
dc.subject.ddc 500 | Naturwissenschaften
dc.title Colloidal pathways of amorphous calcium carbonate formation lead to distinct water environments and conductivity eng
dc.type Article
dc.type Text
dc.relation.essn 2041-1723
dc.relation.doi https://doi.org/10.1038/s41467-023-44381-x
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 15
dc.bibliographicCitation.firstPage 80
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken