Device-independent quantum key distribution with random key basis

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/16582
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/16709
dc.contributor.author Schwonnek, René
dc.contributor.author Goh, Koon Tong
dc.contributor.author Primaatmaja, Ignatius W.
dc.contributor.author Tan, Ernest Y.-Z.
dc.contributor.author Wolf, Ramona
dc.contributor.author Scarani, Valerio
dc.contributor.author Lim, Charles C.-W.
dc.date.accessioned 2024-03-15T08:58:07Z
dc.date.available 2024-03-15T08:58:07Z
dc.date.issued 2021
dc.identifier.citation Schwonnek, R.; Goh, K.T.; Primaatmaja, I.W.; Tan, E.Y.-Z.; Wolf, R. et al.: Device-independent quantum key distribution with random key basis. In: Nature Communications 12 (2021), Nr. 1, 2880. DOI: https://doi.org/10.1038/s41467-021-23147-3
dc.description.abstract Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against channel attacks, but also against attacks exploiting implementation loopholes. In recent years, much progress has been made towards realising the first DIQKD experiments, but current proposals are just out of reach of today’s loophole-free Bell experiments. Here, we significantly narrow the gap between the theory and practice of DIQKD with a simple variant of the original protocol based on the celebrated Clauser-Horne-Shimony-Holt (CHSH) Bell inequality. By using two randomly chosen key generating bases instead of one, we show that our protocol significantly improves over the original DIQKD protocol, enabling positive keys in the high noise regime for the first time. We also compute the finite-key security of the protocol for general attacks, showing that approximately 108–1010 measurement rounds are needed to achieve positive rates using state-of-the-art experimental parameters. Our proposed DIQKD protocol thus represents a highly promising path towards the first realisation of DIQKD in practice. eng
dc.language.iso eng
dc.publisher [London] : Nature Publishing Group UK
dc.relation.ispartofseries Nature Communications 12 (2021), Nr. 1
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject equipment eng
dc.subject experimental study eng
dc.subject measurement method eng
dc.subject parameterization eng
dc.subject quantum mechanics eng
dc.subject noise eng
dc.subject positivity rate eng
dc.subject security eng
dc.subject.ddc 500 | Naturwissenschaften
dc.title Device-independent quantum key distribution with random key basis eng
dc.type Article
dc.type Text
dc.relation.essn 2041-1723
dc.relation.doi https://doi.org/10.1038/s41467-021-23147-3
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 12
dc.bibliographicCitation.firstPage 2880
dc.description.version publishedVersion eng
tib.accessRights frei zug�nglich
dc.bibliographicCitation.articleNumber 2880


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken