Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/1642
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/1667
dc.contributor.author Lashkari, Nima
dc.contributor.author Stanford, Douglas
dc.contributor.author Hastings, Matthew
dc.contributor.author Osborne, Tobias J.
dc.contributor.author Hayden, Patrick
dc.date.accessioned 2017-06-15T08:00:10Z
dc.date.available 2017-06-15T08:00:10Z
dc.date.issued 2013
dc.identifier.citation Lashkari, Nima; Stanford, Douglas; Hastings, Matthew; Osborne, Tobias; Hayden, Patrick: Towards the fast scrambling conjecture. In: Journal of High Energy Physics 2013 (2013), Nr. 4, 22. DOI: https://doi.org/10.1007/JHEP04(2013)022
dc.description.abstract Many proposed quantum mechanical models of black holes include highly non-local interactions. The time required for thermalization to occur in such models should reflect the relaxation times associated with classical black holes in general relativity. Moreover, the time required for a particularly strong form of thermalization to occur, sometimes known as scrambling, determines the time scale on which black holes should start to release information. It has been conjectured that black holes scramble in a time logarithmic in their entropy, and that no system in nature can scramble faster. In this article, we address the conjecture from two directions. First, we exhibit two examples of systems that do indeed scramble in logarithmic time: Brownian quantum circuits and the antiferromagnetic Ising model on a sparse random graph. Unfortunately, both fail to be truly ideal fast scramblers for reasons we discuss. Second, we use Lieb-Robinson techniques to prove a logarithmic lower bound on the scrambling time of systems with finite norm terms in their Hamiltonian. The bound holds in spite of any nonlocal structure in the Hamiltonian, which might permit every degree of freedom to interact directly with every other one. eng
dc.description.sponsorship CIFAR
dc.description.sponsorship NSERC
dc.description.sponsorship Canada Research Chairs program
dc.description.sponsorship ONR/N0001480811249
dc.description.sponsorship United States NSF
dc.language.iso eng
dc.publisher New York, NY : Springer International Publishing
dc.relation.ispartofseries Journal of High Energy Physics 2013 (2013), Nr. 4
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Lattice Integrable Models eng
dc.subject M(atrix) Theories eng
dc.subject Black Holes eng
dc.subject Quantum Dissipative Systems eng
dc.subject black-hole complementarity eng
dc.subject lieb-robinson bounds eng
dc.subject statistical-mechanics eng
dc.subject quantum-mechanics eng
dc.subject lattice systems eng
dc.subject entropy eng
dc.subject strings eng
dc.subject theorem eng
dc.subject.ddc 530 | Physik ger
dc.title Towards the fast scrambling conjecture eng
dc.type Article
dc.type Text
dc.relation.issn 1029-8479
dc.relation.doi https://doi.org/10.1007/JHEP04(2013)022
dc.bibliographicCitation.issue 4
dc.bibliographicCitation.volume 2013
dc.bibliographicCitation.firstPage 22
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die folgenden Lizenzbestimmungen sind mit dieser Ressource verbunden:

Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken