Ligand field density functional theory for the prediction of future domestic lighting

Show simple item record

dc.identifier.uri http://dx.doi.org/10.15488/145
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/163
dc.contributor.author Ramanantoanina, Harry
dc.contributor.author Urland, Werner
dc.contributor.author Garcia-Fuente, Amador
dc.contributor.author Cimpoesu, Fanica
dc.contributor.author Daul, Claude
dc.date.accessioned 2015-12-08T13:08:08Z
dc.date.available 2015-12-08T13:08:08Z
dc.date.issued 2014-05-13
dc.identifier.citation Ramanantoanina, Harry; Urland, Werner; Garcia-Fuente, Amador; Cimpoesu, Fanica; Daul, Claude: Ligand field density functional theory for the prediction of future domestic lighting. In: Physical Chemistry Chemical Physics 16 (2014), Nr. 28, S. 14625-14634. DOI: http://dx.doi.org/10.1039/c3cp55521f
dc.description.abstract We deal with the computational determination of the electronic structure and properties of lanthanide ions in complexes and extended structures having open-shell f and d configurations. Particularly, we present conceptual and methodological issues based on Density Functional Theory (DFT) enabling the reliable calculation and description of the f → d transitions in lanthanide doped phosphors. We consider here the optical properties of the Pr3+ ion embedded into various solid state fluoride host lattices, for the prospection and understanding of the so-called quantum cutting process, being important in the further quest of warm-white light source in light emitting diodes (LED). We use the conceptual formulation of the revisited ligand field (LF) theory, fully compatibilized with the quantum chemistry tools: LFDFT. We present methodological advances for the calculations of the Slater–Condon parameters, the ligand field interaction and the spin–orbit coupling constants, important in the non-empirical parameterization of the effective Hamiltonian adjusted from the ligand field theory. The model shows simple procedure using less sophisticated computational tools, which is intended to contribute to the design of modern phosphors and to help to complement the understanding of the 4fn → 4fn−15d1 transitions in any lanthanide system. eng
dc.description.sponsorship Swiss National Science Foundation
dc.description.sponsorship Swiss State Secretariat for Innovation and Research
dc.description.sponsorship UEFISCDI Romania research grant/PCE 14/2013
dc.language.iso eng eng
dc.publisher Cambridge : Royal Society of Chemistry
dc.relation.ispartofseries Physical Chemistry Chemical Physics 16 (2014), Nr. 28
dc.rights Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
dc.subject excited-state absorption eng
dc.subject angular overlap model eng
dc.subject augmented-wave method eng
dc.subject electronic-properties eng
dc.subject fluoride-crystals eng
dc.subject fine-structure eng
dc.subject complexes eng
dc.subject pr3+ eng
dc.subject dft eng
dc.subject transitions eng
dc.subject.ddc 530 | Physik ger
dc.subject.ddc 540 | Chemie ger
dc.title Ligand field density functional theory for the prediction of future domestic lighting eng
dc.type article
dc.relation.essn 1463-9084
dc.relation.issn 1463-9076
dc.relation.doi http://dx.doi.org/10.1039/c3cp55521f
dc.bibliographicCitation.issue 28
dc.bibliographicCitation.volume 16
dc.bibliographicCitation.firstPage 14625
dc.bibliographicCitation.lastPage 14634
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Files in this item

This item appears in the following Collection(s):

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics