Up-Net: a generic deep learning-based time stepper for parameterized spatio-temporal dynamics

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/14757
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/14876
dc.contributor.author Stender, Merten
dc.contributor.author Ohlsen, Jakob
dc.contributor.author Geisler, Hendrik
dc.contributor.author Chabchoub, Amin
dc.contributor.author Hoffmann, Norbert
dc.contributor.author Schlaefer, Alexander
dc.date.accessioned 2023-09-15T04:50:21Z
dc.date.available 2023-09-15T04:50:21Z
dc.date.issued 2023
dc.identifier.citation Stender, M.; Ohlsen, J.; Geisler, H.; Chabchoub, A.; Hoffmann, N. et al.: Up-Net: a generic deep learning-based time stepper for parameterized spatio-temporal dynamics. In: Computational Mechanics 71 (2023), Nr. 6, S. 1227-1249. DOI: https://doi.org/10.1007/s00466-023-02295-x
dc.description.abstract In the age of big data availability, data-driven techniques have been proposed recently to compute the time evolution of spatio-temporal dynamics. Depending on the required a priori knowledge about the underlying processes, a spectrum of black-box end-to-end learning approaches, physics-informed neural networks, and data-informed discrepancy modeling approaches can be identified. In this work, we propose a purely data-driven approach that uses fully convolutional neural networks to learn spatio-temporal dynamics directly from parameterized datasets of linear spatio-temporal processes. The parameterization allows for data fusion of field quantities, domain shapes, and boundary conditions in the proposed Up-Net architecture. Multi-domain Up-Net models, therefore, can generalize to different scenes, initial conditions, domain shapes, and domain sizes without requiring re-training or physical priors. Numerical experiments conducted on a universal and two-dimensional wave equation and the transient heat equation for validation purposes show that the proposed Up-Net outperforms classical U-Net and conventional encoder–decoder architectures of the same complexity. Owing to the scene parameterization, the Up-Net models learn to predict refraction and reflections arising from domain inhomogeneities and boundaries. Generalization properties of the model outside the physical training parameter distributions and for unseen domain shapes are analyzed. The deep learning flow map models are employed for long-term predictions in a recursive time-stepping scheme, indicating the potential for data-driven forecasting tasks. This work is accompanied by an open-sourced code. eng
dc.language.iso eng
dc.publisher Berlin ; Heidelberg : Springer
dc.relation.ispartofseries Computational Mechanics 71 (2023), Nr. 6
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject Machine learning eng
dc.subject Partial differential equations eng
dc.subject Representation learning eng
dc.subject Sensor data fusion eng
dc.subject Time integration eng
dc.subject Wave propagation eng
dc.subject.ddc 530 | Physik
dc.subject.ddc 004 | Informatik
dc.title Up-Net: a generic deep learning-based time stepper for parameterized spatio-temporal dynamics eng
dc.type Article
dc.type Text
dc.relation.essn 1432-0924
dc.relation.issn 0178-7675
dc.relation.doi https://doi.org/10.1007/s00466-023-02295-x
dc.bibliographicCitation.issue 6
dc.bibliographicCitation.volume 71
dc.bibliographicCitation.firstPage 1227
dc.bibliographicCitation.lastPage 1249
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken