Improving plant drought tolerance and growth under water limitation through combinatorial engineering of signalling networks

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/14517
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/14635
dc.contributor.author Schulz, Philipp
dc.contributor.author Piepenburg, Katrin
dc.contributor.author Lintermann, Ruth
dc.contributor.author Herde, Marco
dc.contributor.author Schöttler, Mark A.
dc.contributor.author Schmidt, Lena K.
dc.contributor.author Ruf, Stephanie
dc.contributor.author Kudla, Jörg
dc.contributor.author Romeis, Tina
dc.contributor.author Bock, Ralph
dc.date.accessioned 2023-08-18T06:30:08Z
dc.date.available 2023-08-18T06:30:08Z
dc.date.issued 2021
dc.identifier.citation Schulz, P.; Piepenburg, K.; Lintermann, R.; Herde, M.; Schöttler, M.A. et al.: Improving plant drought tolerance and growth under water limitation through combinatorial engineering of signalling networks. In: Plant Biotechnology Journal 19 (2021), Nr. 1, S. 74-86. DOI: https://doi.org/10.1111/pbi.13441
dc.description.abstract Agriculture is by far the biggest water consumer on our planet, accounting for 70 per cent of all freshwater withdrawals. Climate change and a growing world population increase pressure on agriculture to use water more efficiently (‘more crop per drop’). Water-use efficiency (WUE) and drought tolerance of crops are complex traits that are determined by many physiological processes whose interplay is not well understood. Here, we describe a combinatorial engineering approach to optimize signalling networks involved in the control of stress tolerance. Screening a large population of combinatorially transformed plant lines, we identified a combination of calcium-dependent protein kinase genes that confers enhanced drought stress tolerance and improved growth under water-limiting conditions. Targeted introduction of this gene combination into plants increased plant survival under drought and enhanced growth under water-limited conditions. Our work provides an efficient strategy for engineering complex signalling networks to improve plant performance under adverse environmental conditions, which does not depend on prior understanding of network function. eng
dc.language.iso eng
dc.publisher Oxford : Wiley-Blackwell
dc.relation.ispartofseries Plant Biotechnology Journal 19 (2021), Nr. 1
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject abiotic stress eng
dc.subject Arabidopsis thaliana eng
dc.subject drought stress eng
dc.subject Nicotiana tabacum eng
dc.subject salt stress eng
dc.subject stress tolerance eng
dc.subject synthetic biology eng
dc.subject water-use efficiency eng
dc.subject.ddc 540 | Chemie
dc.title Improving plant drought tolerance and growth under water limitation through combinatorial engineering of signalling networks eng
dc.type Article
dc.type Text
dc.relation.essn 1467-7652
dc.relation.issn 1467-7644
dc.relation.doi https://doi.org/10.1111/pbi.13441
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 19
dc.bibliographicCitation.firstPage 74
dc.bibliographicCitation.lastPage 86
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken