Material Characterization and Modeling for Finite Element Simulation of Press Hardening with AISI 420C

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/14232
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/14346
dc.contributor.author Behrens, Bernd-Arno
dc.contributor.author Rosenbusch, Daniel
dc.contributor.author Wester, Hendrik
dc.contributor.author Stockburger, Eugen
dc.date.accessioned 2023-07-24T07:18:36Z
dc.date.available 2023-07-24T07:18:36Z
dc.date.issued 2022
dc.identifier.citation Behrens, B.-A.; Rosenbusch, D.; Wester, H.; Stockburger, E.: Material Characterization and Modeling for Finite Element Simulation of Press Hardening with AISI 420C. In: Journal of Materials Engineering and Performance 31 (2022), Nr. 1, S. 825-832. DOI: https://doi.org/10.1007/s11665-021-06216-y
dc.description.abstract The process of press hardening is gaining importance in view of the increasing demand for weight reduction combined with higher crash safety in cars. An alternative to the established manganese-boron steel 22MnB5 is hot-formed martensitic chromium steels such as AISI 420C. Strengths of 1850 MPa and elongations of 12% are possible, exceeding those of 22MnB5. In industrial manufacturing, FE-simulation is commonly used in order to design car body parts cost-efficiently. Therefore, the characterization and the modeling of AISI 420C regarding flow stress, phase transformations as well as failure behavior are presented in this paper. Temperature-depended flow curves are determined, showing the low flow stress and hardening behavior at temperatures around 1000 °C. Cooling experiments are carried out, and a continuous cooling diagram is generated. Observed phases are martensite and retained austenite for industrial relevant cooling rates above 10 K/s. In addition, tests to investigate temperature-dependent forming limit curves are performed. As expected, the highest forming limit is reached at 1050 °C and decreases with falling temperature. Finally, a simulation model of a press-hardening process chain is set up based on the material behavior characterized earlier and compared to experimental values. The forming force, phase transformation and forming limit could be calculated with good agreement to the experiment. eng
dc.language.iso eng
dc.publisher New York, NY : Springer
dc.relation.ispartofseries Journal of Materials Engineering and Performance 31 (2022), Nr. 1
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject continuous cooling diagram eng
dc.subject flow curve eng
dc.subject forming limit diagram eng
dc.subject martensitic chromium steel eng
dc.subject press hardening simulation eng
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau
dc.subject.ddc 660 | Technische Chemie
dc.subject.ddc 670 | Industrielle und handwerkliche Fertigung
dc.title Material Characterization and Modeling for Finite Element Simulation of Press Hardening with AISI 420C eng
dc.type Article
dc.type Text
dc.relation.essn 1544-1024
dc.relation.issn 1059-9495
dc.relation.doi https://doi.org/10.1007/s11665-021-06216-y
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 31
dc.bibliographicCitation.firstPage 825
dc.bibliographicCitation.lastPage 832
dc.description.version publishedVersion eng
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken