A space-based quantum gas laboratory at picokelvin energy scales

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/13396
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/13505
dc.contributor.author Gaaloul, Naceur
dc.contributor.author Meister, Matthias
dc.contributor.author Corgier, Robin
dc.contributor.author Pichery, Annie
dc.contributor.author Boegel, Patrick
dc.contributor.author Herr, Waldemar
dc.contributor.author Ahlers, Holger
dc.contributor.author Charron, Eric
dc.contributor.author Williams, Jason R.
dc.contributor.author Thompson, Robert J.
dc.contributor.author Schleich, Wolfgang P.
dc.contributor.author Rasel, Ernst M.
dc.date.accessioned 2023-03-24T09:18:58Z
dc.date.available 2023-03-24T09:18:58Z
dc.date.issued 2022
dc.identifier.citation Gaaloul, N.; Meister, M.; Corgier, R.; Pichery, A.; Boegel, P. et al.: A space-based quantum gas laboratory at picokelvin energy scales. In: Nature Communications 13 (2022), 7889. DOI: https://doi.org/10.1038/s41467-022-35274-6
dc.description.abstract Ultracold quantum gases are ideal sources for high-precision space-borne sensing as proposed for Earth observation, relativistic geodesy and tests of fundamental physical laws as well as for studying new phenomena in many-body physics during extended free fall. Here we report on experiments with the Cold Atom Lab aboard the International Space Station, where we have achieved exquisite control over the quantum state of single 87Rb Bose-Einstein condensates paving the way for future high-precision measurements. In particular, we have applied fast transport protocols to shuttle the atomic cloud over a millimeter distance with sub-micrometer accuracy and subsequently drastically reduced the total expansion energy to below 100 pK with matter-wave lensing techniques. eng
dc.language.iso eng
dc.publisher [London] : Nature Publishing Group UK
dc.relation.ispartofseries Nature Communications 13 (2022)
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject accuracy assessment eng
dc.subject Earth eng
dc.subject geodesy eng
dc.subject laboratory method eng
dc.subject physics eng
dc.subject quantum mechanics eng
dc.subject.ddc 500 | Naturwissenschaften ger
dc.title A space-based quantum gas laboratory at picokelvin energy scales
dc.type Article
dc.type Text
dc.relation.essn 2041-1723
dc.relation.doi https://doi.org/10.1038/s41467-022-35274-6
dc.bibliographicCitation.volume 13
dc.bibliographicCitation.firstPage 7889
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken