Robust artificial clock transition by continuous dynamical decoupling in multi-ion calcium crystals

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/13239
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/13346
dc.contributor.author Pelzer, Lennart eng
dc.date.accessioned 2023-01-23T10:41:52Z
dc.date.available 2023-01-23T10:41:52Z
dc.date.issued 2023
dc.identifier.citation Pelzer, Lennart: Robust artificial clock transition by continuous dynamical decoupling in multi-ion calcium crystals. Hannover : Gottfried Willhelm Leibniz Universität, Diss., 2023, xiv, 178 S., DOI: https://doi.org/10.15488/13239 eng
dc.description.abstract Optical atomic clocks reach astonishingly low frequency uncertainties. Therefore, they are a valuable tool for applications even beside time determination. Predicted extensions of the standard model of particle physics can be tested using these clocks. For this reason, they can help to uncover unresolved discrepancies between these models and the observed universe. A low frequency uncertainty also enables height measurements according to general relativity. Clock comparisons over long distances might be used to refine geodetic models of the earth’s gravitational potential. A variety of atomic species and techniques are in competition for realizing the most accurate clock. The aluminium single ion clock is, at the moment, the most accurate clock. But it is impeded by long averaging times due to the quantum projection noise limit. For some of the aforementioned applications, this is a serious drawback. Larger ion crystals offer an increased signal-to-noise ratio, but maintaining their frequency accuracy is demanding, as the strong confinement potentials shift the atomic resonance. This thesis reports on the experimental realization of a continuous dynamical decoupling technique. Designed coupling of Zeeman sub-levels by radio-frequency fields is used to mitigate major frequency shifts in 40Ca+ crystals. The obtained artificial clock transition has the potential to compete with more promising clock transitions of different atomic species regarding its low sensitivity to magnetic field fluctuations as well as suppressed quadrupole and tensorial ac-Stark shifts. Long coherence times in multi-ion 40Ca+ crystals are obtained for the artificial transition. Thus, the system’s potential for a low statistical uncertainty makes it promising as a replacement for a lattice clock in a compound clock or for applications where frequency differences must be determined on a short timescale. eng
dc.description.abstract Optische Atomuhren erreichen außergewöhnlich niedrige Frequenzunsicherheiten. Daher sind sie selbst für Anwendungen neben der Zeitbestimmung ein nützliches Werkzeug. Erweiterungen des Standardmodells der Teilchenphysik können durch sie getestet werden und somit können sie helfen, ungelöste Diskrepanzen dieser Modelle mit dem beobachteten Universum aufzudecken. Außerdem werden Höhenmessungen nach Vorhersage der allgemeinen Relativitätstheorie ermöglicht. Uhrenvergleiche über lange Distanzen können verwendet werden, um geodätische Modelle des Gravitationspotentials der Erde zu verbessern. Viele Atomarten und Techniken konkurrieren um die Realisierung der genauesten Uhr. Derzeit hat die Aluminium- Einzelionenuhr die höchste Genauigkeit. Aufgrund ihrer Limitierung durch Quanten-Projektions-Rauschen sind lange Mittelungszeiten erforderlich. Dies ist ein großer Nachteil für einige der oben genannten Anwendungen. Mehrionenkristalle bieten ein größeres Signal-zu-Rauschverhältnis, die Erhaltung ihrer Frequenzgenauigkeit wird jedoch durch die starken Einschlusspotentiale erschwert, welche die atomare Resonanz verschieben. Diese Arbeit beinhaltet die experimentelle Realisierung einer kontinuierlich dynamischen Entkopplungstechnik. Maßgeschneiderte Radiofrequenzfelder werden zur Kopplung von Zeeman- Zuständen genutzt, um einige Frequenzverschiebungen in 40Ca+ Kristallen abzuschwächen. Der künstlich erzeugte Uhrenübergang hat das Potenzial, zu vielversprechenderen Übergängen anderer Atomarten aufzuschließen. Dies gilt in Hinblick auf seine geringe Empfindlichkeit gegenüber Magnetfeldfluktuationen, sowie der unterdrückten Quadrupol- und tensoriellen,dynamischen Stark-Verschiebung. Für den künstlichen Übergang werden lange Kohärenzzeiten in Mehrionen 40Ca+ Kristallen erreicht. Der Austausch von Gitteruhren in einer Hybriduhr durch große Ionenkristalle wird aufgrund der langen Kohärenzzeiten ihres künstlichen Übergangs denkbar. Außerdem ist der künstliche Übergang für Anwendungen interessant, bei denen Frequenzunterschiede auf einer kurzen Zeitskala bestimmt werden müssen. eng
dc.language.iso eng eng
dc.publisher Hannover : Institutionelles Repositorium der Leibniz Unversität Hannover
dc.rights CC BY 3.0 DE eng
dc.rights.uri http://creativecommons.org/licenses/by/3.0/de/ eng
dc.subject continuous dynamical decoupling eng
dc.subject multi-ion eng
dc.subject frequency metrology eng
dc.subject optical atomic clock eng
dc.subject Kontinuierliche dynamische Entkopplung ger
dc.subject Multi-Ion ger
dc.subject Frequenz Metrologie ger
dc.subject Optische Atomuhr ger
dc.subject.ddc 530 | Physik eng
dc.title Robust artificial clock transition by continuous dynamical decoupling in multi-ion calcium crystals eng
dc.type DoctoralThesis eng
dc.type Text eng
dcterms.extent xiv, 178 Seiten eng
dc.description.version publishedVersion eng
tib.accessRights frei zug�nglich eng


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken