Atomistic and continuum scale models for flexoelectric nanostructures and composites

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/13224
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/13331
dc.contributor.author He, Bo eng
dc.date.accessioned 2023-01-20T06:53:35Z
dc.date.available 2023-01-20T06:53:35Z
dc.date.issued 2023
dc.identifier.citation He, Bo: Atomistic and continuum scale models for flexoelectric nanostructures and composites. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2023, ix, 129 S., DOI: https://doi.org/10.15488/13224 eng
dc.description.abstract This work explores the phenomenon of flexoelectricity in nanomaterials and nanostructures by molecular dynamics models and continuum models. Flexoelectricity is an electromechanical phenomenon describing the coupling between electric polarization and strain gradient in a material. Thanks to the strain gradient term, flexoelectricity exhibits an universal existence and size-dependent behavior, enabling strong electromechanical coupling at micro/nanoscale, leading to ideal application in micro/nano-devices, such as Nanogenerator. However, it is difficult to measure or estimate the intrinsic flexoelectric coefficients of a material due to the interference from the piezoelectric effect, representing the coupling between electric polarization and strain. Additionally, the standard continuum model, such as the finite element model, cannot accommodate flexoelectricity due to the higher-order continuity requirement (C1 continuity) imposed by the strain gradient term, requiring the development of novel continuum approaches for the design guidance of flexoelectric devices. These difficulties limit our understanding and potential engineering utilization of flexoelectricity. In the framework of molecular dynamics, this work develops a core-shell and charge-dipole model for extracting flexoelectric coefficients of a traditional electromechanical material (BaTiO3) and newly emerged two-dimensional (2D) materials (in total 21 materials), respectively. Specially designed mechanical loading schemes are employed within the core-shell and charge-dipole model to eliminate the interference from piezoelectricity, enabling direct measurement of the materials’ flexoelectric response. The core-shell models’ results show that the size/surface effect significantly influences the longitudinal and shear flexoelectric coefficient of the BaTiO3 nanostructures. For two-dimensional materials, the charge-dipole model extracted their bending flexoelectric coefficients and identified their contributors. It observes that transition metal dichalcogenide monolayers possess the highest flexoelectric coefficients among the studied 2D materials. This work also develops continuum models to characterize flexoelectricity in continuum solid structures, such as flexoelectric composite. A 2D Meshless model and a 3D nonlinear mixed finite element model employ higher-order shape function and extra degrees of freedom to fulfill the C1 continuity requirement of flexoelectricity. Both models show that structure configurations and material properties influence the electromechanical behavior of flexoelectric composites. Besides, the 3D nonlinear mixed finite element model demonstrated the essentialness of the geometrical nonlinearity for an accurate representation of flexoelectricity by continuum models. eng
dc.language.iso eng eng
dc.publisher Hannover : Institutionelles Repositorium der Leibniz Universität Hannover
dc.rights Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. eng
dc.subject Flexoelectricity eng
dc.subject Molecular dynamics eng
dc.subject Core-shell model eng
dc.subject Charge-dipole model eng
dc.subject Meshless method eng
dc.subject Mixed formulation eng
dc.subject Barium Titanate eng
dc.subject 2D materials eng
dc.subject Composite eng
dc.subject Flexoelektrizität ger
dc.subject Molekulardynamik ger
dc.subject Core-shell-Modell ger
dc.subject Charge-dipole-Modell ger
dc.subject Meshless-Methode ger
dc.subject Gemischte Formulierung ger
dc.subject Bariumtitanat ger
dc.subject 2D-Materialien ger
dc.subject Komposite ger
dc.subject.ddc 500 | Naturwissenschaften eng
dc.title Atomistic and continuum scale models for flexoelectric nanostructures and composites eng
dc.type DoctoralThesis eng
dc.type Text eng
dc.relation.doi https://doi.org/10.1016/j.physb.2018.01.031
dc.relation.doi https://doi.org/10.1103/PhysRevB.99.054105
dc.relation.doi https://doi.org/10.1103/PhysRevMaterials.3.125402
dc.relation.doi https://doi.org/10.3390/en12020271
dcterms.extent ix, 129 eng
dc.description.version publishedVersion eng
tib.accessRights frei zug�nglich eng


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken