Achieving ground state and enhancing optomechanical entanglement by recovering information

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/1286
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/1311
dc.contributor.author Miao, Haixing
dc.contributor.author Danilishin, Stefan L.
dc.contributor.author Mueller-Ebhardt, Helge
dc.contributor.author Chen, Yanbei
dc.date.accessioned 2017-04-06T07:29:14Z
dc.date.available 2017-04-06T07:29:14Z
dc.date.issued 2010
dc.identifier.citation Miao, Haixing; Danilishin, Stefan; Mueller-Ebhardt, Helge; Chen, Yanbei: Achieving ground state and enhancing optomechanical entanglement by recovering information. In: New Journal of Physics 12 (2010), 83032. DOI: https://doi.org/10.1088/1367-2630/12/8/083032
dc.description.abstract For cavity-assisted optomechanical cooling experiments, in order to achieve the quantum ground state of the mechanical oscillator, the cavity bandwidth needs to be smaller than the mechanical frequency. In the literature, this is the so-called resolved-sideband or good-cavity limit, and this is based on an understanding of optomechanical dynamics. We provide a different but physically equivalent explanation of such a limit: that is, information loss due to finite cavity bandwidth. With an optimal feedback control to recover the information in the cavity output, we can surpass the resolved-sideband limit and achieve the quantum ground state. In addition, recovering this information can also significantly enhance the entanglement between the cavity mode and the mechanical oscillator. Especially when the environmental temperature is high, such optomechanical entanglement will either exist or vanish critically depending on whether information is recovered or not. This provides a vivid example of a quantum eraser in the optomechanical system. eng
dc.description.sponsorship Australian Research Council
dc.description.sponsorship Department of Education, Science and Training
dc.description.sponsorship Alexander von Humboldt Foundation/Sofja Kovalevskaja program
dc.description.sponsorship NSF/PHY-0653653
dc.description.sponsorship NSF/PHY-0601459
dc.description.sponsorship David and Barbara Groce startup fund at Caltech
dc.language.iso eng
dc.publisher Bristol : IOP Publishing Ltd.
dc.relation.ispartofseries New Journal of Physics 12 (2010)
dc.rights CC BY-NC-SA 3.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-sa/3.0/
dc.subject radiation-pressure eng
dc.subject separability criterion eng
dc.subject mechanical resonator eng
dc.subject quantum-mechanics eng
dc.subject delayed choice eng
dc.subject micromirror eng
dc.subject oscillator eng
dc.subject cavity eng
dc.subject decoherence eng
dc.subject environment eng
dc.subject.ddc 530 | Physik ger
dc.title Achieving ground state and enhancing optomechanical entanglement by recovering information eng
dc.type Article
dc.type Text
dc.relation.essn 1367-2630
dc.relation.doi https://doi.org/10.1088/1367-2630/12/8/083032
dc.bibliographicCitation.volume 12
dc.bibliographicCitation.firstPage 83032
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die folgenden Lizenzbestimmungen sind mit dieser Ressource verbunden:

Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken