Parameterised complexity of model checking and satisfiability in propositional dependence logic
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
Dependence Logic was introduced by Jouko Väänänen in 2007. We study a propositional variant of this logic (PDL) and investigate a variety of parameterisations with respect to central decision problems. The model checking problem (MC) of PDL is NP-complete (Ebbing and Lohmann, SOFSEM 2012). The subject of this research is to identify a list of parameterisations (formula-size, formula-depth, treewidth, team-size, number of variables) under which MC becomes fixed-parameter tractable. Furthermore, we show that the number of disjunctions or the arity of dependence atoms (dep-arity) as a parameter both yield a paraNP-completeness result. Then, we consider the satisfiability problem (SAT) which classically is known to be NP-complete as well (Lohmann and Vollmer, Studia Logica 2013). There we are presenting a different picture: under team-size, or dep-arity SAT is paraNP-complete whereas under all other mentioned parameters the problem is FPT. Finally, we introduce a variant of the satisfiability problem, asking for a team of a given size, and show for this problem an almost complete picture. © 2021, The Author(s).