Foaming Species and Trapping Mechanisms in Barium Silicate Glass Sealants

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/12812
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/12915
dc.contributor.author Müller, Ralf
dc.contributor.author Behrens, Harald
dc.contributor.author Agea-Blanco, Boris
dc.contributor.author Reinsch, Stefan
dc.contributor.author Wirth, Thomas
dc.date.accessioned 2022-09-30T05:19:36Z
dc.date.available 2022-09-30T05:19:36Z
dc.date.issued 2021
dc.identifier.citation Müller, R.; Behrens, H.; Agea-Blanco, B.; Reinsch, S.; Wirth, T.: Foaming Species and Trapping Mechanisms in Barium Silicate Glass Sealants. In: Advanced engineering materials 24 (2022), Nr. 6, 2100445. DOI: https://doi.org/10.1002/adem.202100445
dc.description.abstract Barium silicate glass powders 4 h milled in CO2 and Ar and sintered in air are studied with microscopy, total carbon analysis, differential thermal analysis (DTA), vacuum hot extraction mass spectroscopy (VHE-MS), Fourier-transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary-ion mass spectrometry (TOF−SIMS). Intensive foaming of powder compacts is evident, and VHE studies prove that foaming is predominantly caused by carbonaceous species for both milling gases. DTA shows that the decomposition of BaCO3 particles mix-milled with glass powders occurs at similar temperatures as foaming of compacts. However, no carbonate at the glass surface could be detected by FTIR spectroscopy, XPS, and TOF−SIMS after heating to the temperature of sintering. Instead, CO2 molecules unable to rotate identified by FTIR spectroscopy after milling, probably trapped by mechanical dissolution into the glass bulk. Such a mechanism or microencapsulation in cracks and particle aggregates can explain the contribution of Ar to foaming after intense milling in Ar atmosphere. The amount of CO2 molecules and Ar, however, cannot fully explain the extent of foaming. Carbonates mechanically dissolved beneath the surface or encapsulated in cracks and micropores of particle aggregates are therefore probably the major foaming source. © 2021 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH. eng
dc.language.iso eng
dc.publisher Weinheim : Wiley-VCH Verl.
dc.relation.ispartofseries Advanced engineering materials 24 (2022), Nr. 6
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject foaming eng
dc.subject glass powder eng
dc.subject milling eng
dc.subject sintering eng
dc.subject.ddc 540 | Chemie ger
dc.subject.ddc 660 | Technische Chemie ger
dc.title Foaming Species and Trapping Mechanisms in Barium Silicate Glass Sealants eng
dc.type Article
dc.type Text
dc.relation.essn 1527-2648
dc.relation.doi https://doi.org/10.1002/adem.202100445
dc.bibliographicCitation.issue 6
dc.bibliographicCitation.volume 24
dc.bibliographicCitation.date 2022
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken