Towards a transportable aluminium ion quantum logic optical clock

Zur Kurzanzeige

dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/12903
dc.identifier.uri https://doi.org/10.15488/12800
dc.contributor.author Hannig, Stephan eng
dc.contributor.author Pelzer, L. eng
dc.contributor.author Scharnhorst, N. eng
dc.contributor.author Kramer, J. eng
dc.contributor.author Stepanova, M. eng
dc.contributor.author Xu, Z.T. eng
dc.contributor.author Spethmann, N. eng
dc.contributor.author Leroux, I.D. eng
dc.contributor.author Mehlstäubler, Tanja E. eng
dc.contributor.author Schmidt, Piet O. eng
dc.date.accessioned 2022-09-26T15:00:29Z
dc.date.available 2022-09-26T15:00:29Z
dc.date.issued 2019
dc.identifier.citation Hannig, S.; Pelzer, L.; Scharnhorst, N.; Kramer, J.; Stepanova, M. et al: Towards a transportable aluminium ion quantum logic optical clock. In: Review of Scientific Instruments 90 (2019), Nr. 5, 053204. DOI: https://doi.org/10.1063/1.5090583 eng
dc.description.abstract With the advent of optical clocks featuring fractional frequency uncertainties on the order of 10-17 and below, new applications such as chronometric leveling with few-centimeter height resolution emerge. We are developing a transportable optical clock based on a single trapped aluminum ion, which is interrogated via quantum logic spectroscopy. We employ singly charged calcium as the logic ion for sympathetic cooling, state preparation, and readout. Here, we present a simple and compact physics and laser package for manipulation of 40Ca+. Important features are a segmented multilayer trap with separate loading and probing zones, a compact titanium vacuum chamber, a near-diffraction-limited imaging system with high numerical aperture based on a single biaspheric lens, and an all-in-fiber 40Ca+ repump laser system. We present preliminary estimates of the trap-induced frequency shifts on 27Al+, derived from measurements with a single calcium ion. The micromotion-induced second-order Doppler shift for 27Al+ has been determined to be δνEMMν=-0.4-0.3 +0.4×10-18 and the black-body radiation shift is δνBBR/ν = (-4.0 ± 0.4) × 10-18. Moreover, heating rates of 30 (7) quanta per second at trap frequencies of ωrad,Ca+ ≈ 2π × 2.5 MHz (ωax,Ca+ ≈ 2π × 1.5 MHz) in radial (axial) direction have been measured, enabling interrogation times of a few hundreds of milliseconds. eng
dc.language.iso eng eng
dc.publisher American Institute of Physics : [S.l.]
dc.relation.ispartofseries Review of Scientific Instruments 90 (2019), Nr. 5 eng
dc.rights CC BY 4.0 Unported eng
dc.rights.uri https://creativecommons.org/licenses/by/4.0/ eng
dc.rights.uri https://creativecommons.org/licenses/by/4.0/ eng
dc.rights.uri https://creativecommons.org/licenses/by/4.0/ eng
dc.subject Aluminum eng
dc.subject Atomic clocks eng
dc.subject Calcium eng
dc.subject Ions eng
dc.subject Optical variables measurement eng
dc.subject Quantum theory eng
dc.subject Trapped ions eng
dc.subject.ddc 530 | Physik eng
dc.title Towards a transportable aluminium ion quantum logic optical clock eng
dc.type Article eng
dc.type Text eng
dc.relation.essn 1089-7623
dc.relation.doi https://doi.org/10.1063/1.5090583
dc.bibliographicCitation.issue 5
dc.bibliographicCitation.volume 90
dc.description.version publishedVersion eng
tib.accessRights frei zug�nglich eng
dc.bibliographicCitation.articleNumber 053204
dc.bibliographicCitation.articleNumber 053204


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken