A spatially stabilized TDG based finite element framework for modeling biofilm growth with a multi-dimensional multi-species continuum biofilm model

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/1259
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/1284
dc.contributor.author Feng, D.
dc.contributor.author Neuweiler, Insa
dc.contributor.author Nackenhorst, Udo
dc.date.accessioned 2017-04-05T12:01:24Z
dc.date.available 2018-02-21T23:05:13Z
dc.date.issued 2017
dc.identifier.citation Feng, D.; Neuweiler, I.; Nackenhorst, U.: A spatially stabilized TDG based finite element framework for modeling biofilm growth with a multi-dimensional multi-species continuum biofilm model. In: Computational Mechanics 59 (2017), Nr. 6, S. 1049-1070. DOI: https://doi.org/10.1007/s00466-017-1388-1
dc.description.abstract We consider a model for biofilm growth in the continuum mechanics framework, where the growth of different components of biomass is governed by a time dependent advection–reaction equation. The recently developed time-discontinuous Galerkin (TDG) method combined with two different stabilization techniques, namely the Streamline Upwind Petrov Galerkin (SUPG) method and the finite increment calculus (FIC) method, are discussed as solution strategies for a multi-dimensional multi-species biofilm growth model. The biofilm interface in the model is described by a convective movement following a potential flow coupled to the reaction inside of the biofilm. Growth limiting substrates diffuse through a boundary layer on top of the biofilm interface. A rolling ball method is applied to obtain a boundary layer of constant height. We compare different measures of the numerical dissipation and dispersion of the simulation results in particular for those with non-trivial patterns. By using these measures, a comparative study of the TDG–SUPG and TDG–FIC schemes as well as sensitivity studies on the time step size, the spatial element size and temporal accuracy are presented. The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-017-1388-1 eng
dc.description.sponsorship State of Lower Saxony
dc.language.iso eng
dc.publisher Heidelberg : Springer Verlag
dc.relation.ispartofseries Computational Mechanics 59 (2017), Nr. 6
dc.rights Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.subject Advection-reaction equations eng
dc.subject Finite element eng
dc.subject Numerical dissipation and dispersion eng
dc.subject TDG-SUPG eng
dc.subject TDG-FIC eng
dc.subject Advection eng
dc.subject Biofilms eng
dc.subject Boundary layers eng
dc.subject Calculations eng
dc.subject Continuum mechanics eng
dc.subject Dispersions eng
dc.subject Galerkin methods eng
dc.subject Interfaces (materials) eng
dc.subject Discontinuous galerkin eng
dc.subject Multi-species biofilms eng
dc.subject Numerical dissipation eng
dc.subject Reaction equations eng
dc.subject Sensitivity studies eng
dc.subject Stabilization techniques eng
dc.subject Streamlineupwind / petrov-galerkin methods (SUPG) eng
dc.subject Time-dependent advection eng
dc.subject Finite element method eng
dc.subject.ddc 004 | Informatik ger
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau ger
dc.title A spatially stabilized TDG based finite element framework for modeling biofilm growth with a multi-dimensional multi-species continuum biofilm model eng
dc.type Article
dc.type Text
dc.relation.issn 0178-7675
dc.relation.doi https://doi.org/10.1007/s00466-017-1388-1
dc.bibliographicCitation.issue 6
dc.bibliographicCitation.volume 59
dc.bibliographicCitation.firstPage 1
dc.bibliographicCitation.firstPage 1049
dc.bibliographicCitation.lastPage 22
dc.bibliographicCitation.lastPage 1070
dc.description.version acceptedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken