Synthesis and Characterization of 40 wt % Ce0.9Pr0.1O2–δ–60 wt % NdxSr1−xFe0.9Cu0.1O3−δ Dual-Phase Membranes for Efficient Oxygen Separation

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/12644
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/12744
dc.contributor.author Chen, Guoxing
dc.contributor.author Zhao, Zhijun
dc.contributor.author Widenmeyer, Marc
dc.contributor.author Yan, Ruijuan
dc.contributor.author Wang, Ling
dc.contributor.author Feldhoff, Armin
dc.contributor.author Weidenkaff, Anke
dc.date.accessioned 2022-08-04T08:31:57Z
dc.date.available 2022-08-04T08:31:57Z
dc.date.issued 2020
dc.identifier.citation Chen, G.; Zhao, Z.; Widenmeyer, M.; Yan, R.; Wang, L. et al.: Synthesis and Characterization of 40 wt % Ce0.9Pr0.1O2–δ–60 wt % NdxSr1−xFe0.9Cu0.1O3−δ Dual-Phase Membranes for Efficient Oxygen Separation. In: Membranes 10 (2020), Nr. 8, 183. DOI: https://doi.org/10.3390/membranes10080183
dc.description.abstract Dense, H2- and CO2-resistant, oxygen-permeable 40 wt % Ce0.9Pr0.1O2–δ–60 wt % NdxSr1−xFe0.9Cu0.1O3−δdual-phase membranes were prepared in a one-pot process. These Nd-containing dual-phase membranes have up to 60% lower material costs than many classically used dual-phase materials. The Ce0.9Pr0.1O2−δ–Nd0.5Sr0.5Fe0.9Cu0.1O3−δ sample demonstrates outstanding activity and a regenerative ability in the presence of different atmospheres, especially in a reducing atmosphere and pure CO2 atmosphere in comparison with all investigated samples. The oxygen permeation fluxes across a Ce0.9Pr0.1O2−δ–Nd0.5Sr0.5Fe0.9Cu0.1O3−δ membrane reached up to 1.02 mL min−1 cm−2 and 0.63 mL min−1 cm−2 under an air/He and air/CO2 gradient at T = 1223 K, respectively. In addition, a Ce0.9Pr0.1O2–δ–Nd0.5Sr0.5Fe0.9Cu0.1O3–δ membrane (0.65 mm thickness) shows excellent long-term self-healing stability for 125 h. The repeated membrane fabrication delivered oxygen permeation fluxes had a deviation of less than 5%. These results indicate that this highly renewable dual-phase membrane is a potential candidate for long lifetime, high temperature gas separation applications and coupled reaction–separation processes. eng
dc.language.iso eng
dc.publisher Basel : MDPI AG
dc.relation.ispartofseries Membranes 10 (2020), Nr. 8
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Carbon dioxide eng
dc.subject High temperature applications eng
dc.subject Oxygen eng
dc.subject Permeation eng
dc.subject Separation eng
dc.subject Dual phase membranes eng
dc.subject Dual-phase materials eng
dc.subject High temperature gas eng
dc.subject Membrane fabrication eng
dc.subject Oxygen-permeation flux eng
dc.subject Reducing atmosphere eng
dc.subject Separation process eng
dc.subject Synthesis and characterizations eng
dc.subject Oxygen permeable membranes eng
dc.subject CO2 tolerance eng
dc.subject Dual-phase membrane eng
dc.subject Long-term stability eng
dc.subject Oxygen separation eng
dc.subject Regenerative ability eng
dc.subject.ddc 570 | Biowissenschaften, Biologie ger
dc.title Synthesis and Characterization of 40 wt % Ce0.9Pr0.1O2–δ–60 wt % NdxSr1−xFe0.9Cu0.1O3−δ Dual-Phase Membranes for Efficient Oxygen Separation
dc.type Article
dc.type Text
dc.relation.essn 2077-0375
dc.relation.doi https://doi.org/10.3390/membranes10080183
dc.bibliographicCitation.issue 8
dc.bibliographicCitation.volume 10
dc.bibliographicCitation.firstPage 183
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken