High-Capacity, Dendrite-Free, and Ultrahigh-Rate Lithium-Metal Anodes Based on Monodisperse N-Doped Hollow Carbon Nanospheres

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/12615
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/12715
dc.contributor.author Liu, Yuping
dc.contributor.author Zhen, Yanzhong
dc.contributor.author Li, Taoran
dc.contributor.author Bettels, Frederik
dc.contributor.author He, Tao
dc.contributor.author Peng, Manhua
dc.contributor.author Liang, Yucang
dc.contributor.author Ding, Fei
dc.contributor.author Zhang, Lin
dc.date.accessioned 2022-08-04T08:31:54Z
dc.date.available 2022-08-04T08:31:54Z
dc.date.issued 2020
dc.identifier.citation Liu, Y.; Zhen, Y.; Li, T.; Bettels, F.; He, T. et al.: High-Capacity, Dendrite-Free, and Ultrahigh-Rate Lithium-Metal Anodes Based on Monodisperse N-Doped Hollow Carbon Nanospheres. In: Small 16 (2020), Nr. 44, 2004770. DOI: https://doi.org/10.1002/smll.202004770
dc.description.abstract To unlock the great potential of lithium metal anodes for high-performance batteries, a number of critical challenges must be addressed. The uncontrolled dendrite growth and volume changes during cycling (especially, at high rates) will lead to short lifespan, low Coulombic efficiency (CE), and security risks of the batteries. Here it is reported that Li metal anodes, employing the monodisperse, lithiophilic, robust, and large-cavity N-doped hollow carbon nanospheres (NHCNSs) as the host, show remarkable performances—high areal capacity (10 mAh cm−2), high CE (up to 99.25% over 500 cycles), complete suppression of dendrite growth, dense packing of Li anode, and an extremely smooth electrode surface during repeated Li plating/stripping. In symmetric cells, a highly stable voltage hysteresis over a long cycling life >1200 h is achieved, and a low and stable voltage hysteresis can be realized even at an ultrahigh current density of 64 mA cm−2. Furthermore, the NHCNSs-based anodes, when paired with a LiFePO4 (LFP) cathode in full cells, give rise to highly improved rate capability (104 mAh g−1 at 10 C) and cycling stability (91.4% capacity retention for 200 cycles), enabling a promising candidate for the next-generation high energy/power density batteries. eng
dc.language.iso eng
dc.publisher Weinheim : Wiley-VCH
dc.relation.ispartofseries Small 16 (2020), Nr. 44
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Anodes eng
dc.subject Carbon eng
dc.subject Doping (additives) eng
dc.subject Hysteresis eng
dc.subject Iron compounds eng
dc.subject Lithium eng
dc.subject Lithium compounds eng
dc.subject Nanospheres eng
dc.subject Capacity retention eng
dc.subject Coulombic efficiency eng
dc.subject Critical challenges eng
dc.subject Electrode surfaces eng
dc.subject Hollow carbon nanospheres eng
dc.subject Lithium metal anode eng
dc.subject Rate capabilities eng
dc.subject Voltage hysteresis eng
dc.subject Lithium-ion batteries eng
dc.subject dendrite-free surface eng
dc.subject dense Li anode eng
dc.subject lithium metal anodes eng
dc.subject N-doped hollow carbon nanospheres eng
dc.subject ultrahigh rate eng
dc.subject.ddc 570 | Biowissenschaften, Biologie ger
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau ger
dc.title High-Capacity, Dendrite-Free, and Ultrahigh-Rate Lithium-Metal Anodes Based on Monodisperse N-Doped Hollow Carbon Nanospheres
dc.type Article
dc.type Text
dc.relation.essn 1613-6829
dc.relation.issn 1613-6810
dc.relation.doi https://doi.org/10.1002/smll.202004770
dc.bibliographicCitation.issue 44
dc.bibliographicCitation.volume 16
dc.bibliographicCitation.firstPage 2004770
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken