A multiscale DEM–FEM coupled approach for the investigation of granules as crash-absorber in ship building

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/12333
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/12432
dc.contributor.author Chaudry, Mohsin Ali
dc.contributor.author Woitzik, Christian
dc.contributor.author Düster, Alexander
dc.contributor.author Wriggers, Peter
dc.date.accessioned 2022-06-27T04:36:58Z
dc.date.available 2022-06-27T04:36:58Z
dc.date.issued 2022
dc.identifier.citation Chaudry, M.A.; Woitzik, C.; Düster, A.; Wriggers, P.: A multiscale DEM–FEM coupled approach for the investigation of granules as crash-absorber in ship building. In: Computational Particle Mechanics 9 (2022), Nr. 1, S. 179-197. DOI: https://doi.org/10.1007/s40571-021-00401-5
dc.description.abstract This paper covers a numerical analysis of a novel approach to increasing the crashworthiness of double hull ships. As proposed in Schöttelndreyer (Füllstoffe in der Konstruktion: ein Konzept zur Verstärkung vonSchiffsseitenhüllen, Technische Uni-versitt Hamburg, Hamburg, 2015), it involves the usage of granular materials in the cavity of the double hull ship. For the modeling of this problem, the discrete element method (DEM) is used for the granules while the finite element method is used for the ship’s structure. In order to account for the structural damage caused by collision, a gradient-enhanced ductile damage model is implemented. In addition to avoid locking, an enhanced strain-based formulation is used. For large-scale problems such as the one in the current study, modeling of all granules with realistic size can be computationally expensive. A two-scale model based on the work of Wellmann and Wriggers (Comput Methods Appl Mech Eng 205:46–58, 2012) is applied—and the region of significant localization is modeled with the DEM, while a continuum model is used for the other regions. The coupling of both discretization schemes is based on the Arlequin method. Numerical homogenization is used to estimate the material parameters of the continuum region with the granules. This involves the usage of meshless interpolation functions for the projection of particle displacement and stress onto a background mesh. Later, the volume-averaged stress and strain within the representative volume element is used to estimate the material parameters. At the end, the results from the combined numerical model are compared with the results from the experiments given in Woitzik and Düster (Ships Offshore Struct 1–12, 2020). This validates both the accuracy of the numerical model and the proposed idea of increasing the crashworthiness of double hull vessels with the granular materials. © 2021, The Author(s). eng
dc.language.iso eng
dc.publisher Berlin ; Heidelberg [u.a.] : Springer
dc.relation.ispartofseries Computational Particle Mechanics 9 (2022), Nr. 1
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Crashworthiness of ship eng
dc.subject Gradient enhanced ductile damage eng
dc.subject Homogenization eng
dc.subject Multiscale DEM–FEM coupled model eng
dc.subject.ddc 004 | Informatik ger
dc.title A multiscale DEM–FEM coupled approach for the investigation of granules as crash-absorber in ship building
dc.type Article
dc.type Text
dc.relation.essn 2196-4386
dc.relation.doi https://doi.org/10.1007/s40571-021-00401-5
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 9
dc.bibliographicCitation.firstPage 179
dc.bibliographicCitation.lastPage 197
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken