Simulation-based Efficiency Gain Analysis of 21.2%-efficient Screen-printed PERC Solar Cells

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/1200
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/1224
dc.contributor.author Kranz, Christopher
dc.contributor.author Petermann, Jan-Hendrik
dc.contributor.author Dullweber, Thorsten
dc.contributor.author Brendel, Rolf
dc.date.accessioned 2017-03-17T10:51:53Z
dc.date.available 2017-03-17T10:51:53Z
dc.date.issued 2016
dc.identifier.citation Kranz, C.; Petermann, J.H.; Dullweber, T.; Brendel, R.: Simulation-based Efficiency Gain Analysis of 21.2%-efficient Screen-printed PERC Solar Cells. In: Energy Procedia 92 (2016), S. 109-115. DOI: https://doi.org/10.1016/j.egypro.2016.07.038
dc.description.abstract Passivated Emitter and Rear Cells (PERC) with efficiencies well above 20% are likely to become the next mass production technology. A quantification of all power loss mechanisms of such industrial PERC cells is helpful in prioritizing future efficiency improvement measures. We report on a numerical simulation of the power losses of a 21.2%-efficient industrial PERC cell using extensive experimental input data. Our synergetic efficiency gain analysis relies on deactivating single power loss mechanisms in the simulation at a time to access the full potential power gain related to that mechanism. The complete analysis therefore explains the efficiency gap between the industrial PERC solar cell and the theoretical maximum efficiency of a crystalline Si solar cell. Based on the simulations, the largest single loss mechanism is front grid shadowing followed by recombination in the emitter and its surface. All individual resistive losses, all individual optical losses and all (avoidable) individual recombination losses sum up to efficiency gains of 0.8%, 1.6%, and 1.3%, respectively, which is 3.7% in total. The efficiency gap between real and ideal solar cell is, however, much larger with 7.3%. The discrepancy is mainly due to the non-linear behaviour of recombination-based power losses which adds synergetic efficiency enhancements. eng
dc.language.iso eng
dc.publisher London : Elsevier Ltd.
dc.relation.ispartofseries Energy Procedia 92 (2016)
dc.rights CC BY-NC-ND 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject device simulation eng
dc.subject PERC solar cells eng
dc.subject power loss analysis eng
dc.subject screen-printing eng
dc.subject Crystalline materials eng
dc.subject Efficiency eng
dc.subject Electric losses eng
dc.subject Silicon solar cells eng
dc.subject Crystalline Si solar cells eng
dc.subject Device simulations eng
dc.subject Efficiency enhancement eng
dc.subject Efficiency improvement eng
dc.subject Maximum Efficiency eng
dc.subject Nonlinear behaviours eng
dc.subject PERC solar cells eng
dc.subject Power loss analysis eng
dc.subject.classification Konferenzschrift ger
dc.subject.ddc 530 | Physik ger
dc.title Simulation-based Efficiency Gain Analysis of 21.2%-efficient Screen-printed PERC Solar Cells eng
dc.type Article
dc.type Text
dc.relation.issn 1876-6102
dc.relation.doi https://doi.org/10.1016/j.egypro.2016.07.038
dc.bibliographicCitation.volume 92
dc.bibliographicCitation.firstPage 109
dc.bibliographicCitation.lastPage 115
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken