Solar cell emitter design with PV-tailored implantation

Show simple item record

dc.identifier.uri http://dx.doi.org/10.15488/1157
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/1181
dc.contributor.author Ohrdes, Tobias
dc.contributor.author Steingrube, S.
dc.contributor.author Wagner, Hannes
dc.contributor.author Zechner, C.
dc.contributor.author Letay, G.
dc.contributor.author Chen, R.
dc.contributor.author Dunham, S.T.
dc.contributor.author Altermatt, Pietro P.
dc.date.accessioned 2017-02-23T13:12:54Z
dc.date.available 2017-02-23T13:12:54Z
dc.date.issued 2011
dc.identifier.citation Ohrdes, T.; Steingrube, S.; Wagner, H.; Zechner, C.; Letay, G. et al.: Solar cell emitter design with PV-tailored implantation. In: Energy Procedia 8 (2011), S. 167-173. DOI: https://doi.org/10.1016/j.egypro.2011.06.119
dc.description.abstract A potentially cost-effective ion implanter for solar cells has become commercially available very recently. As the emitter dopant profiles differ from the standard diffusions, a combination of process simulation and device simulation is used to predict possible applications as front emitter. The simulations show that ion energies of 10 to 30 keV and doses in the range of 5×1014 to 7×1015 cm-2 are sufficient for reducing the phosphorus peak density and, hence, obtaining cell efficiency levels above 20%, if appropriate surface passivation and wafer materials are used. The simulations strongly indicate, however, that cell efficiency improves only marginally if the cell has a fully metallized rear Al-BSF and a boron-doped Cz base in the degraded state. Simulated cells with a local rear Al-BSF show an efficiency improvement of more than 0.3% absolute in the degraded state. eng
dc.language.iso eng
dc.publisher Amsterdam : Elsevier BV
dc.relation.ispartof 1st International Conference on Crystalline Silicon Photovoltaics, SiliconPV 2011, April 17-20 2011, Freiburg, Germany
dc.relation.ispartofseries Energy Procedia 8 (2011)
dc.rights CC BY-NC-ND 3.0
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subject Device simulation eng
dc.subject Implantation eng
dc.subject Process simulation eng
dc.subject Si solar cells eng
dc.subject Boron-doped eng
dc.subject Cell efficiency eng
dc.subject Device simulations eng
dc.subject Dopant profile eng
dc.subject Efficiency improvement eng
dc.subject Ion energies eng
dc.subject Ion implanters eng
dc.subject Peak density eng
dc.subject Process simulations eng
dc.subject Si solar cells eng
dc.subject Surface passivation eng
dc.subject Wafer material eng
dc.subject Aluminum eng
dc.subject Boron eng
dc.subject Crystalline materials eng
dc.subject Doping (additives) eng
dc.subject Efficiency eng
dc.subject Passivation eng
dc.subject Phosphorus eng
dc.subject Photovoltaic effects eng
dc.subject Silicon wafers eng
dc.subject Nanostructured materials eng
dc.subject.ddc 333 | Boden- und Energiewirtschaft ger
dc.subject.ddc 530 | Physik ger
dc.title Solar cell emitter design with PV-tailored implantation
dc.type article
dc.type conferenceObject
dc.type Text
dc.relation.issn 1876-6102
dc.relation.doi https://doi.org/10.1016/j.egypro.2011.06.119
dc.bibliographicCitation.volume 8
dc.bibliographicCitation.firstPage 167
dc.bibliographicCitation.lastPage 173
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Files in this item

This item appears in the following Collection(s):

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics