Abstract: | |
The mitochondrial nicotinamide adenine dinucleotide, reduced (NADH) dehydrogenase complex (complex I) of plants has a molecular mass of about 1000 kDa and is composed of more than 40 distinct protein subunits. About three quarter of these subunits are homologous to complex I subunits of heterotrophic eukaryotes, whereas the remaining subunits are unique to plants. Among them are three to five structurally related proteins that resemble an archaebacterial γ-type carbonic anhydrase (γCA). The γCA subunits are attached to the membrane arm of complex I on the matrix-exposed side and form an extra spherical domain. At the same time, they span the inner mitochondrial membrane and are essential for assembly of the protein complex. Expression of the genes encoding γCA subunits is reduced if plants are cultivated in the presence of elevated CO2 concentration. The functional role of these subunits within plant mitochondria is currently unknown but might be related to photorespiration. We propose that the complex I-integrated γCAs are involved in mitochondrial HCO3- formation to allow efficient recycling of inorganic carbon for CO2 fixation in chloroplasts under high light conditions. © Physiologia Plantarum 2007.
|
|
License of this version: | Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. |
Publication type: | Article |
Publishing status: | acceptedVersion |
Publication date: | 2007 |
Keywords english: | Amino acids, Bacteria, Cell membranes, Complexation, Plants (botany), Mitochondrial membranes, Mitochondrial NADH dehydrogenase complex, Molecular mass, Protein complexs, Enzymes, Archaea, Eukaryota |
DDC: | 580 | Pflanzen (Botanik) |
Showing items related by title, author, creator and subject.