Show simple item record

dc.identifier.uri http://dx.doi.org/10.15488/11196
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/11282
dc.contributor.author Lachmann, Maike D.
dc.contributor.author Ahlers, Holger
dc.contributor.author Becker, Dennis
dc.contributor.author Dinkelaker, Aline N.
dc.contributor.author Grosse, Jens
dc.contributor.author Hellmig, Ortwin
dc.contributor.author Müntinga, Hauke
dc.contributor.author Schkolnik, Vladimir
dc.contributor.author Seidel, Stephan T.
dc.contributor.author Wendrich, Thijs
dc.contributor.author Wenzlawski, André
dc.contributor.author Carrick, Benjamin
dc.contributor.author Gaaloul, Naceur
dc.contributor.author Lüdtke, Daniel
dc.contributor.author Braxmaier, Claus
dc.contributor.author Ertmer, Wolfgang
dc.contributor.author Krutzik, Markus
dc.contributor.author Lämmerzahl, Claus
dc.contributor.author Peters, Achim
dc.contributor.author Schleich, Wolfgang P.
dc.contributor.author Sengstock, Klaus
dc.contributor.author Wicht, Andreas
dc.contributor.author Windpassinger, Patrick
dc.contributor.author Rasel, Ernst M.
dc.date.accessioned 2021-08-12T11:25:54Z
dc.date.available 2021-08-12T11:25:54Z
dc.date.issued 2021
dc.identifier.citation Lachmann, M.D.; Ahlers, H.; Becker, D.; Dinkelaker, A.N.; Grosse, J. et al.: Ultracold atom interferometry in space. In: Nature Communications 12 (2021), 1317. DOI: https://doi.org/10.1038/s41467-021-21628-z
dc.description.abstract Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation. eng
dc.language.iso eng
dc.publisher London : Nature Publishing Group
dc.relation.ispartofseries Nature Communications 12 (2021)
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Atom optics eng
dc.subject Atomic and molecular interactions with photons eng
dc.subject Matter waves and particle beams eng
dc.subject Quantum metrology eng
dc.subject Quantum optics eng
dc.subject.ddc 500 | Naturwissenschaften ger
dc.title Ultracold atom interferometry in space
dc.type Article
dc.type Text
dc.relation.essn 2041-1723
dc.relation.doi https://doi.org/10.1038/s41467-021-21628-z
dc.bibliographicCitation.volume 12
dc.bibliographicCitation.firstPage 1317
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Files in this item

This item appears in the following Collection(s):

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics