Constructing networks of quantum channels for state preparation

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/11050
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/11132
dc.contributor.author Bondarenko, Dmytro eng
dc.date.accessioned 2021-06-09T12:14:09Z
dc.date.available 2021-06-09T12:14:09Z
dc.date.issued 2021
dc.identifier.citation Bondarenko, Dmytro: Constructing networks of quantum channels for state preparation. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2021, 185 S. DOI: https://doi.org/10.15488/11050 eng
dc.description.abstract Entangled possibly mixed states are an essential resource for quantum computation, communication, metrology, and the simulation of many-body systems. It is important to develop and improve preparation protocols for such states. One possible way to prepare states of interest is to design an open system that evolves only towards the desired states. A Markovian evolution of a quantum system can be generally described by a Lindbladian. Tensor networks provide a framework to construct physically relevant entangled states. In particular, matrix product density operators (MPDOs) form an important variational class of states. MPDOs generalize matrix product states to mixed states, can represent thermal states of local one-dimensional Hamiltonians at sufficiently large temperatures, describe systems that satisfy the area law of entanglement, and form the basis of powerful numerical methods. In this work we develop an algorithm that determines for a given linear subspace of MPDOs whether this subspace can be the stable space of some frustration free k-local Lindbladian and, if so, outputs an appropriate Lindbladian. We proceed by using machine learning with networks of quantum channels, also known as quantum neural networks (QNNs), to train denoising post-processing devices for quantum sources. First, we show that QNNs can be trained on imperfect devices even when part of the training data is corrupted. Second, we show that QNNs can be trained to extrapolate quantum states to, e.g., lower temperatures. Third, we show how to denoise quantum states in an unsupervised manner. We develop a novel quantum autoencoder that successfully denoises Greenberger-Horne-Zeilinger, W, Dicke, and cluster states subject to spin-flip, dephasing errors, and random unitary noise. Finally, we develop recurrent QNNs (RQNNs) for denoising that requires memory, such as combating drifts. RQNNs can be thought of as matrix product quantum channels with a quantum algorithm for training and are closely related to MPDOs. The proposed preparation and denoising protocols can be beneficial for various emergent quantum technologies and are within reach of present-day experiments. eng
dc.language.iso eng eng
dc.publisher Hannover : Institutionelles Repositorium der Leibniz Universität Hannover
dc.rights CC BY 3.0 DE eng
dc.rights.uri http://creativecommons.org/licenses/by/3.0/de/ eng
dc.subject denoising eng
dc.subject state preparation eng
dc.subject open quantum systems eng
dc.subject quantum machine learning eng
dc.subject dissipative preparation eng
dc.subject quantum state engineering eng
dc.subject parent Lindbladians eng
dc.subject matrix product density operators eng
dc.subject quantum neural networks eng
dc.subject recurrent quantum neural networks eng
dc.subject quantum autoencoders eng
dc.subject quantum channels eng
dc.subject quantum state extrapolation eng
dc.subject Rauschunterdrückung ger
dc.subject Zustandspräparation ger
dc.subject offene Quantensysteme ger
dc.subject maschinelles Lernen auf Quantencomputern ger
dc.subject Quantendaten ger
dc.subject dissipative Zustandspräparation ger
dc.subject Design von Quantenzuständen ger
dc.subject erzeugende Lindbladoperatoren ger
dc.subject Matrixproduktdichteoperator ger
dc.subject Neuronale Netze auf Quantencomputern ger
dc.subject Quantenautoencoder ger
dc.subject Quantenkanäle ger
dc.subject Extrapolation von Quantenzuständen ger
dc.subject.ddc 530 | Physik eng
dc.title Constructing networks of quantum channels for state preparation eng
dc.type DoctoralThesis eng
dc.type Text eng
dcterms.extent 185 S.
dc.description.version publishedVersion eng
tib.accessRights frei zug�nglich eng


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken