Oxidation as Key Mechanism for Efficient Interface Passivation in Cu (In,Ga)Se2 Thin-Film Solar Cells

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/10842
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/10920
dc.contributor.author Werner, Florian
dc.contributor.author Veith-Wolf, Boris
dc.contributor.author Spindler, Conrad
dc.contributor.author Barget, Michael R.
dc.contributor.author Babbe, Finn
dc.contributor.author Guillot, Jerome
dc.contributor.author Schmidt, Jan
dc.contributor.author Siebentritt, Susanne
dc.date.accessioned 2021-04-30T05:23:11Z
dc.date.available 2021-04-30T05:23:11Z
dc.date.issued 2020
dc.identifier.citation Werner, F.; Veith-Wolf, B.; Spindler, C.; Barget, M.R.; Babbe, F. et al.: Oxidation as Key Mechanism for Efficient Interface Passivation in Cu (In,Ga)Se2 Thin-Film Solar Cells. In: Physical Review Applied 13 (2020), Nr. 5, 054004. DOI: https://doi.org/10.1103/PhysRevApplied.13.054004
dc.description.abstract Copper-indium-gallium-diselenide (CIGS) thin-film solar cells suffer from high recombination losses at the back contact and parasitic absorption in the front-contact layers. Dielectric passivation layers overcome these limitations and enable an efficient control over interface recombination, which becomes increasingly relevant as thin-film solar cells increase in efficiency and become thinner to reduce the consumption of precious resources. We present the optoelectronic and chemical interface properties of oxide-based passivation layers deposited by atomic layer deposition on CIGS. A suitable postdeposition annealing removes detrimental interface defects and leads to restructuring and oxidation of the CIGS surface. The optoelectronic interface properties are very similar for different passivation approaches, demonstrating that an efficient suppression of interface states is possible independent of the metal used in the passivating oxide. If aluminum oxide (Al2O3) is used as the passivation layer we confirm an additional field-effect passivation due to interface charges, resulting in an efficient interface passivation superior to that of a state-of-the-art cadmium-sulfide (CdS) buffer layer. Based on this chemical interface model we present a full-area rear-interface passivation layer without any contact patterning, resulting in a 1% absolute efficiency gain compared to a standard molybdenum back contact. © 2020 authors. Published by the American Physical Society. eng
dc.language.iso eng
dc.publisher College Park, Md. [u.a.] : American Physical Society
dc.relation.ispartofseries Physical Review Applied 13 (2020), Nr. 5
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject copper-indium-gallium-diselenide (CIGS) eng
dc.subject solar cells eng
dc.subject dielectric passivation layers eng
dc.subject.ddc 530 | Physik ger
dc.title Oxidation as Key Mechanism for Efficient Interface Passivation in Cu (In,Ga)Se2 Thin-Film Solar Cells
dc.type Article
dc.type Text
dc.relation.essn 2331-7019
dc.relation.doi https://doi.org/10.1103/PhysRevApplied.13.054004
dc.bibliographicCitation.issue 5
dc.bibliographicCitation.volume 13
dc.bibliographicCitation.firstPage 54004
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken