Sigma-model limit of Yang–Mills instantons in higher dimensions

Show simple item record

dc.identifier.uri Deser, Andreas Lechtenfeld, Olaf Popov, Alexander D. 2015-10-30T13:52:00Z 2015-10-30T13:52:00Z 2015
dc.identifier.citation Deser, Andreas; Lechtenfeld, Olaf; Popov, Alexander D. (2015): Sigma-model limit of Yang–Mills instantons in higher dimensions. In: Nuclear Physics B 894, S. 361–373. DOI:
dc.description.abstract We consider the Hermitian Yang–Mills (instanton) equations for connections on vector bundles over a 2n-dimensional Kähler manifold Xwhich is a product Y×Zof p-and q-dimensional Riemannian manifold Yand Zwith p+q=2n. We show that in the adiabatic limit, when the metric in the Zdirection is scaled down, the gauge instanton equations on Y×Zbecome sigma-model instanton equations for maps from Yto the moduli space M(target space) of gauge instantons on Zif q≥4. For q<4we get maps from Yto the moduli space Mof flat connections on Z. Thus, the Yang–Mills instantons on Y×Zconverge to sigma-model instantons on Ywhile Zshrinks to a point. Put differently, for small volume of Z, sigma-model instantons on Ywith target space Mapproximate Yang–Mills instantons on Y×Z. eng
dc.description.sponsorship DFG/LE/838/13
dc.language.iso eng eng
dc.publisher Amsterdam : Elsevier Science BV
dc.relation.ispartofseries Nuclear Physics B 894 (2015)
dc.rights CC BY 4.0 Unported
dc.subject high energy physics eng
dc.subject theory eng
dc.subject mathematical physics eng
dc.subject mathematics eng
dc.subject differential geometry eng
dc.subject stable vector-bundles eng
dc.subject chern-simons theory eng
dc.subject greater-than 4 eng
dc.subject gauge-theory eng
dc.subject calibrated geometry eng
dc.subject holonomy manifolds eng
dc.subject fields eng
dc.subject equations eng
dc.subject connections eng
dc.subject reduction eng
dc.subject.ddc 530 | Physik ger
dc.title Sigma-model limit of Yang–Mills instantons in higher dimensions eng
dc.type Article
dc.type Text
dc.relation.issn 0550-3213
dc.bibliographicCitation.volume 894
dc.bibliographicCitation.firstPage 361
dc.bibliographicCitation.lastPage 373
dc.description.version publishedVersion
tib.accessRights frei zug�nglich

Files in this item

This item appears in the following Collection(s):

Show simple item record


Search the repository


My Account

Usage Statistics