Single-element dual-interferometer for precision inertial sensing

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/10807
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/10885
dc.contributor.author Yang, Yichao
dc.contributor.author Yamamoto, Kohei
dc.contributor.author Huarcaya, Victor
dc.contributor.author Vorndamme, Christoph
dc.contributor.author Penkert, Daniel
dc.contributor.author Barranco, Germán Fernández
dc.contributor.author Schwarze, Thomas S.
dc.contributor.author Mehmet, Moritz
dc.contributor.author Delgado, Juan Jose Esteban
dc.contributor.author Jia, Jianjun
dc.contributor.author Heinzel, Gerhard
dc.contributor.author Álvarez, Miguel Dovale
dc.date.accessioned 2021-04-23T09:02:56Z
dc.date.available 2021-04-23T09:02:56Z
dc.date.issued 2020
dc.identifier.citation Yang, Y.; Yamamoto, K.; Huarcaya, V.; Vorndamme, C.; Penkert, D. et al.: Single-element dual-interferometer for precision inertial sensing. In: Sensors 20 (2020), Nr. 17, 4986. DOI: https://doi.org/10.3390/s20174986
dc.description.abstract Tracking moving masses in several degrees of freedom with high precision and large dynamic range is a central aspect in many current and future gravitational physics experiments. Laser interferometers have been established as one of the tools of choice for such measurement schemes. Using sinusoidal phase modulation homodyne interferometry allows a drastic reduction of the complexity of the optical setup, a key limitation of multi-channel interferometry. By shifting the complexity of the setup to the signal processing stage, these methods enable devices with a size and weight not feasible using conventional techniques. In this paper we present the design of a novel sensor topology based on deep frequency modulation interferometry: the self-referenced single-element dual-interferometer (SEDI) inertial sensor, which takes simplification one step further by accommodating two interferometers in one optic. Using a combination of computer models and analytical methods we show that an inertial sensor with sub-picometer precision for frequencies above 10 mHz, in a package of a few cubic inches, seems feasible with our approach. Moreover we show that by combining two of these devices it is possible to reach sub-picometer precision down to 2 mHz. In combination with the given compactness, this makes the SEDI sensor a promising approach for applications in high precision inertial sensing for both next-generation space-based gravity missions employing drag-free control, and ground-based experiments employing inertial isolation systems with optical readout. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. eng
dc.language.iso eng
dc.publisher Basel : MDPI AG
dc.relation.ispartofseries Sensors 20 (2020), Nr. 17
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Inertial sensing eng
dc.subject Laser interferometry eng
dc.subject Optical readout eng
dc.subject Degrees of freedom (mechanics) eng
dc.subject Gravitation eng
dc.subject Inertial navigation systems eng
dc.subject Laser interferometry eng
dc.subject Modulation eng
dc.subject Analytical method eng
dc.subject Conventional techniques eng
dc.subject Drag-free control eng
dc.subject Gravitational physics eng
dc.subject Isolation systems eng
dc.subject Laser interferometer eng
dc.subject Sensor topologies eng
dc.subject Sinusoidal phase modulation eng
dc.subject Interferometers eng
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau ger
dc.title Single-element dual-interferometer for precision inertial sensing
dc.type Article
dc.type Text
dc.relation.essn 1424-8220
dc.relation.doi https://doi.org/10.3390/s20174986
dc.bibliographicCitation.issue 17
dc.bibliographicCitation.volume 20
dc.bibliographicCitation.firstPage 4986
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken