Damage detection for wind turbine rotor blades using airborne sound

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/10799
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/10877
dc.contributor.author Krause, Thomas
dc.contributor.author Ostermann, Jörn
dc.date.accessioned 2021-04-23T09:02:55Z
dc.date.available 2021-04-23T09:02:55Z
dc.date.issued 2020
dc.identifier.citation Krause, T.; Ostermann, J.: Damage detection for wind turbine rotor blades using airborne sound. In: Structural Control and Health Monitoring 27 (2020), Nr. 5, e2520. DOI: https://doi.org/10.1002/stc.2520
dc.description.abstract When operating a wind turbine, damage of rotor blades is a serious problem. Undetected damages are likely to increase overtime, and therefore, the safety risks and economical burdens also increase. A monitoring system, which detects reliably defects in early stages, gives scope for action and is therefore a key element to avoid damage increase and to optimize the efficiency of wind turbines. One promising approach for damage detection is acoustic emission methods. Although most acoustic emission approaches use ultrasonic sound waves of the structure that require about 12 to 40 sensors to monitor one rotor blade, we propose to use the airborne sound in lower frequencies from about 500 Hz to 35 Hz with three optical microphones and present a signal model-based damage detection algorithm. The real-time algorithm uses six audio features from a spectrogram representation to detect damages and to estimate its significance. In a fatigue test of a 34-m blade, the algorithm detected the damage event and damage increasing without false detection. It was also tested with recordings inside an operating blade of a 3.4-MW wind turbine. In the recorded time period of about 1 year, the algorithm indicated no false detection. © 2020 The Authors. Structural Control and Health Monitoring published by John Wiley & Sons Ltd eng
dc.language.iso eng
dc.publisher Hoboken, NJ : Wiley
dc.relation.ispartofseries Structural Control and Health Monitoring 27 (2020), Nr. 5
dc.rights CC BY-NC-ND 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject acoustic emission eng
dc.subject acoustic signal processing eng
dc.subject airborne sound eng
dc.subject damage detection eng
dc.subject rotor blades eng
dc.subject wind energy eng
dc.subject Acoustic emissions eng
dc.subject Acoustic noise measurement eng
dc.subject Acoustic signal processing eng
dc.subject Damage detection eng
dc.subject Fatigue testing eng
dc.subject Signal processing eng
dc.subject Turbine components eng
dc.subject Turbomachine blades eng
dc.subject Ultrasonic applications eng
dc.subject Wind power eng
dc.subject Wind turbines eng
dc.subject Acoustic emission method eng
dc.subject Airborne sound eng
dc.subject Detection algorithm eng
dc.subject Optical microphone eng
dc.subject Real time algorithms eng
dc.subject Rotor blades eng
dc.subject Ultrasonic sound waves eng
dc.subject Wind turbine rotors eng
dc.subject Acoustic emission testing eng
dc.subject.ddc 510 | Mathematik ger
dc.title Damage detection for wind turbine rotor blades using airborne sound
dc.type Article
dc.type Text
dc.relation.essn 1538-523X; 1545-2263
dc.relation.issn 1122-8385; 1545-2255
dc.relation.doi https://doi.org/10.1002/stc.2520
dc.bibliographicCitation.issue 5
dc.bibliographicCitation.volume 27
dc.bibliographicCitation.firstPage e2520
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken