Abstract: | |
We present analyses of Global Navigation Satellite System (GNSS) carrier phase observations in multiple kinematic scenarios for different receiver types. Multi-GNSS observations are recorded on high sensitivity and geodetic-grade receivers operating on a moving zero-baseline by conducting terrestrial urban and aerial flight experiments. The captured data is post-processed; carrier phase residuals are computed using the double difference (DD) concept. The estimated noise levels of carrier phases are analysed with respect to different parameters. We find DD noise levels for L1 carrier phase observations in the range of 1.4–2 mm (GPS, Global Positioning System), 2.8–4.6 mm (GLONASS, Global Navigation Satellite System), and 1.5–1.7 mm (Galileo) for geodetic receiver pairs. The noise level for high sensitivity receivers is at least higher by a factor of 2. For satellites elevating above 30◦, the dominant noise process is white phase noise. For the flight experiment, the elevation dependency of the noise is well described by the exponential model, while for the terrestrial urban experiment, multipath and diffraction effects overlay; hence no elevation dependency is found. For both experiments, a carrier-to-noise density ratio (C/N0) dependency for carrier phase DDs of GPS and Galileo is clearly visible with geodetic-grade receivers. In addition, C/N0 dependency is also visible for carrier phase DDs of GLONASS with geodetic-grade receivers for the terrestrial urban experiment. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
|
|
License of this version: | CC BY 4.0 Unported - https://creativecommons.org/licenses/by/4.0/ |
Publication type: | Article |
Publishing status: | publishedVersion |
Publication date: | 2020 |
Keywords english: | Double difference, Geodetic and high sensitivity GNSS receivers, Global Navigation Satellite System (GNSS), Kinematic terrestrial and flight experiment, Relative positioning, Stochastic models, Air navigation, Antennas, Communication satellites, Geodesy, Geodetic satellites, Navigation, Carrier phase data, Carrier-phase observations, Diffraction effects, Double differences, Exponential models, Flight experiments, Global Navigation Satellite Systems, High-sensitivity receivers, Global positioning system, article, diffraction, global positioning system, noise, stochastic model |
DDC: | 620 | Ingenieurwissenschaften und Maschinenbau |
Showing items related by title, author, creator and subject.