Universal atom interferometer simulation of elastic scattering processes

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/10752
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/10830
dc.contributor.author Fitzek, Florian
dc.contributor.author Siemß, Jan-Niclas
dc.contributor.author Seckmeyer, Stefan
dc.contributor.author Ahlers, Holger
dc.contributor.author Rasel, Ernst M.
dc.contributor.author Hammerer, Klemens
dc.contributor.author Gaaloul, Naceur
dc.date.accessioned 2021-04-07T11:59:39Z
dc.date.available 2021-04-07T11:59:39Z
dc.date.issued 2020
dc.identifier.citation Fitzek, F.; Siemß, J.-N.; Seckmeyer, S.; Ahlers, H.; Rasel, E.M. et al.: Universal atom interferometer simulation of elastic scattering processes. In: Scientific Reports 10 (2020), Nr. 1, 22120. DOI: https://doi.org/10.1038/s41598-020-78859-1
dc.description.abstract In this article, we introduce a universal simulation framework covering all regimes of matter-wave light-pulse elastic scattering. Applied to atom interferometry as a study case, this simulator solves the atom-light diffraction problem in the elastic case, i.e., when the internal state of the atoms remains unchanged. Taking this perspective, the light-pulse beam splitting is interpreted as a space and time-dependent external potential. In a shift from the usual approach based on a system of momentum-space ordinary differential equations, our position-space treatment is flexible and scales favourably for realistic cases where the light fields have an arbitrary complex spatial behaviour rather than being mere plane waves. Moreover, the solver architecture we developed is effortlessly extended to the problem class of trapped and interacting geometries, which has no simple formulation in the usual framework of momentum-space ordinary differential equations. We check the validity of our model by revisiting several case studies relevant to the precision atom interferometry community. We retrieve analytical solutions when they exist and extend the analysis to more complex parameter ranges in a cross-regime fashion. The flexibility of the approach, the insight it gives, its numerical scalability and accuracy make it an exquisite tool to design, understand and quantitatively analyse metrology-oriented matter-wave interferometry experiments. © 2020, The Author(s). eng
dc.language.iso eng
dc.publisher London : Nature Publishing Group
dc.relation.ispartofseries Scientific Reports 10 (2020), Nr. 1
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject interferometry eng
dc.subject atom eng
dc.subject geometries eng
dc.subject framework eng
dc.subject diffraction eng
dc.subject equation eng
dc.subject coupling eng
dc.subject.ddc 500 | Naturwissenschaften ger
dc.subject.ddc 600 | Technik ger
dc.title Universal atom interferometer simulation of elastic scattering processes
dc.type Article
dc.type Text
dc.relation.essn 2045-2322
dc.relation.doi https://doi.org/10.1038/s41598-020-78859-1
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 10
dc.bibliographicCitation.firstPage 22120
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken