Process design for 5-axis ball end milling using a real-time capable dynamic material removal simulation

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/10747
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/10825
dc.contributor.author Denkena, Berend
dc.contributor.author Pape, O.
dc.contributor.author Krödel, A.
dc.contributor.author Böß, V.
dc.contributor.author Ellersiek, L.
dc.contributor.author Mücke, A.
dc.date.accessioned 2021-04-07T11:59:39Z
dc.date.available 2021-04-07T11:59:39Z
dc.date.issued 2021
dc.identifier.citation Denkena, B.; Pape, O.; Krödel, A.; Böß, V.; Ellersiek, L.; Mücke, A.: Process design for 5-axis ball end milling using a real-time capable dynamic material removal simulation. In: Production Engineering 15 (2021), S. 89-95. DOI: https://doi.org/10.1007/s11740-020-01003-5
dc.description.abstract For repairing turbine blades or die and mold forms, additive manufacturing processes are commonly used to build-up new material to damaged sections. Afterwards, a subsequent re-contouring process such as 5-axis ball end milling is required to remove the excess material restoring the often complex original geometries. The process design of the re-contouring operation has to be done virtually, because the individuality of the repair cases prevents actual running-in processes. Hard-to-cut materials e.g. titanium or nickel alloys, parts prone to vibration and long tool holders complicate the repair even further. Thus, a fast and flexible material removal simulation is needed. The simulation has to predict suitable processes focusing shape deviations under consideration of process stability for arbitrary complex engagement conditions. In this paper, a dynamic multi-dexel based material removal simulation is presented, which is able to predict high-resolution surface topography and stable parameters for arbitrary processes such as 5-axis ball end milling. In contrast to other works, the simulation is able to simulate an unstable process using discrete cutting edges in real-time. © 2020, The Author(s). eng
dc.language.iso eng
dc.publisher Heidelberg : Springer
dc.relation.ispartofseries Production Engineering 15 (2021)
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Dexel eng
dc.subject Milling eng
dc.subject Process stability eng
dc.subject Simulation eng
dc.subject 3D printers eng
dc.subject Ball milling eng
dc.subject Milling (machining) eng
dc.subject Nickel alloys eng
dc.subject Process design eng
dc.subject Titanium alloys eng
dc.subject Topography eng
dc.subject Turbomachine blades eng
dc.subject Additive manufacturing process eng
dc.subject Dynamic materials eng
dc.subject Flexible materials eng
dc.subject Hard to cut material eng
dc.subject Process stability eng
dc.subject Running-in process eng
dc.subject Shape deviations eng
dc.subject Unstable process eng
dc.subject Design eng
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau ger
dc.title Process design for 5-axis ball end milling using a real-time capable dynamic material removal simulation
dc.type Article
dc.type Text
dc.relation.essn 1863-7353
dc.relation.issn 0944-6524
dc.relation.doi https://doi.org/10.1007/s11740-020-01003-5
dc.bibliographicCitation.volume 15
dc.bibliographicCitation.firstPage 89
dc.bibliographicCitation.lastPage 95
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken