Evaluation of Different Processor Architecture Organizations for On-Site Electronics in Harsh Environments

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/10727
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/10805
dc.contributor.author Gesper, Sven
dc.contributor.author Weißbrich, Moritz
dc.contributor.author Stuckenberg, Tobias
dc.contributor.author Jääskeläinen, Pekka
dc.contributor.author Blume, Holger
dc.contributor.author Payá-Vayá, Guillermo
dc.date.accessioned 2021-03-31T06:01:25Z
dc.date.available 2021-03-31T06:01:25Z
dc.date.issued 2021
dc.identifier.citation Gesper, S.; Weißbrich, M.; Stuckenberg, T.; Jääskeläinen, P.; Blume, H. et al.: Evaluation of Different Processor Architecture Organizations for On-Site Electronics in Harsh Environments. In: International Journal of Parallel Programming 49 (2021), S. 541-569. DOI: https://doi.org/10.1007/s10766-020-00686-8
dc.description.abstract Microcontrollers to be used in harsh environmental conditions, e.g., at high temperatures or radiation exposition, need to be fabricated in robust technology nodes in order to operate reliably. However, these nodes are considerably larger than cutting-edge semiconductor technologies and provide less speed, drastically reducing system performance. In order to achieve low silicon area costs, low power consumption and reasonable performance, the processor architecture organization itself is a major influential design point. Parameters like data path width, instruction execution paradigm, code density, memory requirements, advanced control flow mechanisms etc., may have large effects on the design constraints. Application characteristics, like exploitable data parallelism and required arithmetic operations, have to be considered in order to use the implemented processor resources efficiently. In this paper, a design space exploration of five different architectures with MIPS- or ARM-compatible instruction set architectures, as well as transport-triggered instruction execution is presented. Using a 0.18 µ m SOI CMOS technology for high temperature and an exemplary case study from the fields of communication, i.e., powerline communication encoder, the influence of architectural parameters on performance and hardware efficiency is compared. For this application, a transport-triggered architecture configuration has an 8.5× higher performance and 2.4× higher computational energy efficiency at a 1.6× larger total silicon area than an off-the-shelf ARM Cortex-M0 embedded processor, showing the considerable range of design trade-offs for different architectures. © 2020, The Author(s). eng
dc.language.iso eng
dc.publisher Dordrecht [u.a.] : Springer Science + Business Media B.V.
dc.relation.ispartofseries International Journal of Parallel Programming 49 (2021)
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject ASIC eng
dc.subject design tradeoff analysis eng
dc.subject harsh environment eng
dc.subject processor architecture organization eng
dc.subject transport-triggered architecture eng
dc.subject.ddc 004 | Informatik ger
dc.title Evaluation of Different Processor Architecture Organizations for On-Site Electronics in Harsh Environments
dc.type Article
dc.type Text
dc.relation.essn 1573-7640
dc.relation.issn 0091-7036
dc.relation.issn 0885-7458
dc.relation.doi https://doi.org/10.1007/s10766-020-00686-8
dc.bibliographicCitation.volume 49
dc.bibliographicCitation.firstPage 541
dc.bibliographicCitation.lastPage 569
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken