Single-Atom Quantum Probes for Ultracold Gases Boosted by Nonequilibrium Spin Dynamics

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/10655
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/10733
dc.contributor.author Bouton, Quentin
dc.contributor.author Nettersheim, Jens
dc.contributor.author Adam, Daniel
dc.contributor.author Schmidt, Felix
dc.contributor.author Mayer, Daniel
dc.contributor.author Lausch, Tobias
dc.contributor.author Tiemann, Eberhard
dc.contributor.author Widera, Artur
dc.date.accessioned 2021-03-26T10:06:22Z
dc.date.available 2021-03-26T10:06:22Z
dc.date.issued 2020
dc.identifier.citation Bouton, Q.; Nettersheim, J.; Adam, D.; Schmidt, F.; Mayer, D. et al.: Single-Atom Quantum Probes for Ultracold Gases Boosted by Nonequilibrium Spin Dynamics. In: Physical Review X 10 (2020), Nr. 1, 11018. DOI: https://doi.org/10.1103/PhysRevX.10.011018
dc.description.abstract Quantum probes are atomic sized devices mapping information of their environment to quantum-mechanical states. By improving measurements and at the same time minimizing perturbation of the environment, they form a central asset for quantum technologies. We realize spin-based quantum probes by immersing individual Cs atoms into an ultracold Rb bath. Controlling inelastic spin-exchange processes between the probe and bath allows us to map motional and thermal information onto quantum-spin states. We show that the steady-state spin population is well suited for absolute thermometry, reducing temperature measurements to detection of quantum-spin distributions. Moreover, we find that the information gain per inelastic collision can be maximized by accessing the nonequilibrium spin dynamic. Keeping the motional degree of freedom thermalized, individual spin-exchange collisions yield information about the gas quantum by quantum. We find that the sensitivity of this nonequilibrium quantum probing effectively beats the steady-state Cramér-Rao limit by almost an order of magnitude, while reducing the perturbation of the bath to only three quanta of angular momentum. Our work paves the way for local probing of quantum systems at the Heisenberg limit, and moreover, for optimizing measurement strategies via control of nonequilibrium dynamics. © 2020 authors. Published by the American Physical Society. eng
dc.language.iso eng
dc.publisher College Park, MD : American Physical Society
dc.relation.ispartofseries Physical Review X 10 (2020), Nr. 1
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Atoms eng
dc.subject Degrees of freedom (mechanics) eng
dc.subject Probes eng
dc.subject Quantum optics eng
dc.subject Temperature measurement eng
dc.subject Degree of freedom eng
dc.subject Inelastic collision eng
dc.subject Mapping information eng
dc.subject Measurement strategies eng
dc.subject Non-equilibrium dynamics eng
dc.subject Quantum mechanical state eng
dc.subject Quantum technologies eng
dc.subject Spin-exchange collision eng
dc.subject Spin dynamics eng
dc.subject.ddc 530 | Physik ger
dc.title Single-Atom Quantum Probes for Ultracold Gases Boosted by Nonequilibrium Spin Dynamics
dc.type Article
dc.type Text
dc.relation.essn 2160-3308
dc.relation.doi https://doi.org/10.1103/PhysRevX.10.011018
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 10
dc.bibliographicCitation.firstPage 11018
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken