Resolution of the colocation problem in satellite quantum tests of the universality of free fall

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/10647
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/10725
dc.contributor.author Loriani, Sina
dc.contributor.author Schubert, Christian
dc.contributor.author Schlippert, Dennis
dc.contributor.author Ertmer, Wolfgang
dc.contributor.author Pereira Dos Santos, Franck
dc.contributor.author Rasel, Ernst Maria
dc.contributor.author Gaaloul, Naceur
dc.contributor.author Wolf, Peter
dc.date.accessioned 2021-03-26T10:06:21Z
dc.date.available 2021-03-26T10:06:21Z
dc.date.issued 2020
dc.identifier.citation Loriani, S.; Schubert, C.; Schlippert, D.; Ertmer, W.; Pereira Dos Santos, F. et al.: Resolution of the colocation problem in satellite quantum tests of the universality of free fall. In: Physical Review D 102 (2020), Nr. 12, 124043. DOI: https://doi.org/10.1103/PhysRevD.102.124043
dc.description.abstract A major challenge common to all Galilean drop tests of the universality of free fall (UFF) is the required control over the initial kinematics of the two test masses upon release due to coupling to gravity gradients and rotations. In this work, we consider a space-borne test of the UFF based on atom interferometry and show that this detrimental effect can be mitigated at the 10-18 level given an initial differential position (velocity) uncertainty in the order of μm (μm/s) of the test masses. This corresponds to a relaxation of the source control by several orders of magnitude with respect to comparable mission scenarios, such as the STE-QUEST mission proposal reported in [D. N. Aguilera et al., Classical Quantum Gravity 31, 115010 (2014)CQGRDG0264-938110.1088/0264-9381/31/11/115010]. Our twofold mitigation strategy extends a compensation mechanism that is already established in terrestrial experiments to satellite missions with varying gravity gradients and exploits the spectral distribution of the systematics. We assess the experimental feasibility and find that the moderate parameters of the proposed scheme are in line with technological capabilities. The described attenuation of the gravity-gradient-induced uncertainty removes one major obstacle in quantum tests of the UFF and allows us to consider mission scenarios with target accuracies beyond the state of the art. © 2020 authors. Published by the American Physical Society. eng
dc.language.iso eng
dc.publisher College Park, MD : American Physical Society
dc.relation.ispartofseries Physical Review D 102 (2020), Nr. 12
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Condensed matter eng
dc.subject Nuclear physics eng
dc.subject Particles (Nuclear physics) eng
dc.subject Quantum gravity eng
dc.subject General relativity (Physics) eng
dc.subject Gravitation eng
dc.subject Fluid dynamics eng
dc.subject.ddc 530 | Physik ger
dc.title Resolution of the colocation problem in satellite quantum tests of the universality of free fall
dc.type Article
dc.type Text
dc.relation.essn 1089-4918
dc.relation.essn 1550-2368
dc.relation.essn 2470-0029
dc.relation.issn 2470-0010
dc.relation.doi https://doi.org/10.1103/PhysRevD.102.124043
dc.bibliographicCitation.issue 12
dc.bibliographicCitation.volume 102
dc.bibliographicCitation.firstPage 124043
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken