Prospects and challenges for squeezing-enhanced optical atomic clocks

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/10590
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/10667
dc.contributor.author Schulte, Marius
dc.contributor.author Lisdat, Christian
dc.contributor.author Schmidt, Piet O.
dc.contributor.author Sterr, Uwe
dc.contributor.author Hammerer, Klemens
dc.date.accessioned 2021-03-23T09:46:13Z
dc.date.available 2021-03-23T09:46:13Z
dc.date.issued 2020
dc.identifier.citation Schulte, M.; Lisdat, C.; Schmidt, P.O.; Sterr, U.; Hammerer, K.: Prospects and challenges for squeezing-enhanced optical atomic clocks. In: Nature Communications 11 (2020), Nr. 1, 5955. DOI: https://doi.org/10.1038/s41467-020-19403-7
dc.description.abstract Optical atomic clocks are a driving force for precision measurements due to the high accuracy and stability demonstrated in recent years. While further improvements to the stability have been envisioned by using entangled atoms, squeezing the quantum mechanical projection noise, evaluating the overall gain must incorporate essential features of an atomic clock. Here, we investigate the benefits of spin squeezed states for clocks operated with typical Brownian frequency noise-limited laser sources. Based on an analytic model of the closed servo-loop of an optical atomic clock, we report here quantitative predictions on the optimal clock stability for a given dead time and laser noise. Our analytic predictions are in good agreement with numerical simulations of the closed servo-loop. We find that for usual cyclic Ramsey interrogation of single atomic ensembles with dead time, even with the current most stable lasers spin squeezing can only improve the clock stability for ensembles below a critical atom number of about one thousand in an optical Sr lattice clock. Even with a future improvement of the laser performance by one order of magnitude the critical atom number still remains below 100,000. In contrast, clocks based on smaller, non-scalable ensembles, such as ion clocks, can already benefit from squeezed states with current clock lasers. © 2020, The Author(s). eng
dc.language.iso eng
dc.publisher London : Nature Publishing Group
dc.relation.ispartofseries Nature Communications 11 (2020), Nr. 1
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Brownian motion eng
dc.subject ion eng
dc.subject laser eng
dc.subject magnitude eng
dc.subject molecular analysis eng
dc.subject numerical model eng
dc.subject optical property eng
dc.subject performance assessment eng
dc.subject.ddc 500 | Naturwissenschaften ger
dc.title Prospects and challenges for squeezing-enhanced optical atomic clocks
dc.type Article
dc.type Text
dc.relation.essn 2041-1723
dc.relation.doi https://doi.org/10.1038/s41467-020-19403-7
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 11
dc.bibliographicCitation.firstPage 5955
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken