Numerical analysis of LG3,3 second harmonic generation in comparison to the LG0,0 case

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/10585
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/10662
dc.contributor.author Heinze, Joscha
dc.contributor.author Vahlbruch, Henning
dc.contributor.author Willke, Benno
dc.date.accessioned 2021-03-23T09:46:12Z
dc.date.available 2021-03-23T09:46:12Z
dc.date.issued 2020
dc.identifier.citation Heinze, J.; Vahlbruch, H.; Willke, B.: Numerical analysis of LG3,3 second harmonic generation in comparison to the LG0,0 case. In: Optics Express 28 (2020), Nr. 24, S. 35816-35832. DOI: https://doi.org/10.1364/OE.409507
dc.description.abstract For coating Brownian thermal noise reduction in future gravitational wave detectors, it is proposed to use light in the helical Laguerre-Gaussian LG3,3 mode instead of the currently used LG0,0 mode. However, the simultaneous reduction of quantum noise would then require the efficient generation of squeezed vacuum states in the LG3,3 mode. Current squeezed light generation techniques employ continuous-wave second harmonic generation (SHG). Here, we simulate the SHG for both modes numerically to derive first insights into the transferability of standard squeezed light generation techniques to the LG3,3 mode. In the first part of this paper, we therefore theoretically discuss SHG in the case of a single undepleted pump mode, which, in general, excites a superposition of harmonic modes. Based on the differential equation for the harmonic field, we derive individual phase matching conditions and hence conversion efficiencies for the excited harmonic modes. In the second part, we analyse the numerical simulations of the LG0,0 and LG3,3 SHG in a single-pass, double-pass and cavity-enhanced configuration under the influence of the focusing, the different pump intensity distributions and the individual phase matching conditions. Our results predict that the LG3,3 mode requires about 14 times the pump power of the LG0,0 mode to achieve the same SHG conversion efficiency in an ideal, realistic cavity design and mainly generates the harmonic LG6,6 mode. © 2020 Optical Society of America. eng
dc.language.iso eng
dc.publisher Washington, DC : OSA - The Optical Society
dc.relation.ispartofseries Optics Express 28 (2020), Nr. 24
dc.rights OSA Open Access Publishing Agreement
dc.rights.uri https://www.osapublishing.org/library/license_v1.cfm
dc.subject Conversion efficiency eng
dc.subject Differential equations eng
dc.subject Efficiency eng
dc.subject Gravity waves eng
dc.subject Harmonic analysis eng
dc.subject Noise abatement eng
dc.subject Nonlinear optics eng
dc.subject Phase matching eng
dc.subject Quantum noise eng
dc.subject Quantum theory eng
dc.subject Thermal noise eng
dc.subject Continuous Wave eng
dc.subject Gravitational wave detectors eng
dc.subject Laguerre-Gaussian eng
dc.subject Light generation eng
dc.subject Phase matching conditions eng
dc.subject Pump intensities eng
dc.subject Simultaneous reduction eng
dc.subject Squeezed vacuum state eng
dc.subject Harmonic generation eng
dc.subject article eng
dc.subject computer simulation eng
dc.subject.ddc 530 | Physik ger
dc.title Numerical analysis of LG3,3 second harmonic generation in comparison to the LG0,0 case
dc.type Article
dc.type Text
dc.relation.essn 1094-4087
dc.relation.doi https://doi.org/10.1364/OE.409507
dc.bibliographicCitation.issue 24
dc.bibliographicCitation.volume 28
dc.bibliographicCitation.firstPage 35816
dc.bibliographicCitation.lastPage 35832
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken