Exploration of mechanical, thermal conductivity and electromechanical properties of graphene nanoribbon springs

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/10580
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/10657
dc.contributor.author Javvaji, Brahmanandam
dc.contributor.author Mortazavi, Bohayra
dc.contributor.author Rabczuk, Timon
dc.contributor.author Zhuang, Xiaoying
dc.date.accessioned 2021-03-23T09:46:11Z
dc.date.available 2021-03-23T09:46:11Z
dc.date.issued 2020
dc.identifier.citation Javvaji, B.; Mortazavi, B.; Rabczuk, T.; Zhuang, X.: Exploration of mechanical, thermal conductivity and electromechanical properties of graphene nanoribbon springs. In: Nanoscale Advances 2 (2020), Nr. 8, S. 3394-3403. DOI: https://doi.org/10.1039/d0na00217h
dc.description.abstract Recent experimental advances [Liu et al., npj 2D Mater. Appl., 2019, 3, 23] propose the design of graphene nanoribbon springs (GNRSs) to substantially enhance the stretchability of pristine graphene. A GNRS is a periodic undulating graphene nanoribbon, where undulations are of sinus or half-circle or horseshoe shapes. Besides this, the GNRS geometry depends on design parameters, like the pitch's length and amplitude, thickness and joining angle. Because of the fact that parametric influence on the resulting physical properties is expensive and complicated to examine experimentally, we explore the mechanical, thermal and electromechanical properties of GNRSs using molecular dynamics simulations. Our results demonstrate that the horseshoe shape design GNRS (GNRH) can distinctly outperform the graphene kirigami design concerning the stretchability. The thermal conductivity of GNRSs was also examined by developing a multiscale modeling, which suggests that the thermal transport along these nanostructures can be effectively tuned. We found that however, the tensile stretching of the GNRS and GNRH does not yield any piezoelectric polarization. The bending induced hybridization change results in a flexoelectric polarization, where the corresponding flexoelectric coefficient is 25% higher than that of graphene. Our results provide a comprehensive vision of the critical physical properties of GNRSs and may help to employ the outstanding physics of graphene to design novel stretchable nanodevices. © The Royal Society of Chemistry. eng
dc.language.iso eng
dc.publisher Cambridge : Royal Society of Chemistry
dc.relation.ispartofseries Nanoscale Advances 2 (2020), Nr. 8
dc.rights CC BY-NC 3.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc/3.0/
dc.subject Graphene eng
dc.subject Graphene nanoribbon eng
dc.subject Molecular dynamics eng
dc.subject Nanoribbons eng
dc.subject Polarization eng
dc.subject Springs (components) eng
dc.subject Design parameters eng
dc.subject Electromechanical property eng
dc.subject Flexoelectric coefficients eng
dc.subject Flexoelectric polarizations eng
dc.subject Molecular dynamics simulations eng
dc.subject Multi-scale Modeling eng
dc.subject Piezoelectric polarizations eng
dc.subject Thermal transport eng
dc.subject Thermal conductivity eng
dc.subject.ddc 540 | Chemie ger
dc.title Exploration of mechanical, thermal conductivity and electromechanical properties of graphene nanoribbon springs
dc.type Article
dc.type Text
dc.relation.essn 2516-0230
dc.relation.doi https://doi.org/10.1039/d0na00217h
dc.bibliographicCitation.issue 8
dc.bibliographicCitation.volume 2
dc.bibliographicCitation.firstPage 3394
dc.bibliographicCitation.lastPage 3403
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken