Optimization of complex cutting tools using a multi-dexel based material removal simulation

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/10478
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/10554
dc.contributor.author Denkena, Berend
dc.contributor.author Grove, T.
dc.contributor.author Pape, O.
dc.date.accessioned 2021-03-02T10:17:49Z
dc.date.available 2021-03-02T10:17:49Z
dc.date.issued 2019
dc.identifier.citation Denkena, B.; Grove, T.; Pape, O.: Optimization of complex cutting tools using a multi-dexel based material removal simulation. In: Procedia CIRP 82 (2019), S. 379-382. DOI: https://doi.org/10.1016/j.procir.2019.04.052
dc.description.abstract Multi-dexel based material removal simulations provide a fast and flexible way to compute process forces and tool deflections for milling and turning operations. This allows an advanced process planning including detection of collisions for complex toolpaths. However, using dexel simulations for designing cutting tools has rarely been investigated. Especially the position of individual cutting edges is not considered, because current approaches only subtract the sweep volume of the tool envelop instead of the rake face. This paper presents a new method to design cutting tools using material removal simulations and a detailed tool geometry representation. The discretization of the tool allows an efficient calculation of the engagement conditions of individual cutting edges. The method is used to optimize novel porcupine milling cutters with round indexeble inserts, which produces a geometry analogous to serrated end mills. Based on the calculated forces, the positions of individual indexable inserts are adjusted to minimize the maximum radial force. An optimum has been found that reduces radial force by 12% compared to conventional porcupine milling cutters with squared inserts. © 2019 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the scientific committee of The 17th CIRP Conference on Modelling of Machining Operations eng
dc.language.iso eng
dc.publisher Amsterdam : Elsevier B.V.
dc.relation.ispartofseries Procedia CIRP 82 (2019)
dc.rights CC BY-NC-ND 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject Geometric modeling eng
dc.subject Optimization eng
dc.subject Simulaton eng
dc.subject Geometry eng
dc.subject Machining centers eng
dc.subject Milling (machining) eng
dc.subject Milling cutters eng
dc.subject Optimization eng
dc.subject Turning eng
dc.subject Advanced process eng
dc.subject Discretizations eng
dc.subject Geometric modeling eng
dc.subject Indexable inserts eng
dc.subject Material removal eng
dc.subject Serrated end mills eng
dc.subject Simulaton eng
dc.subject Turning operations eng
dc.subject Cutting tools eng
dc.subject.classification Konferenzschrift ger
dc.subject.ddc 600 | Technik ger
dc.subject.ddc 670 | Industrielle und handwerkliche Fertigung ger
dc.title Optimization of complex cutting tools using a multi-dexel based material removal simulation
dc.type Article
dc.type Text
dc.relation.essn 2212-8271
dc.relation.doi https://doi.org/10.1016/j.procir.2019.04.052
dc.bibliographicCitation.volume 82
dc.bibliographicCitation.firstPage 379
dc.bibliographicCitation.lastPage 382
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken