Characterization of the monolithic fiber amplifier engineering prototype for the next generation of gravitational wave detectors

Show simple item record

dc.identifier.uri http://dx.doi.org/10.15488/10252
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/10325
dc.contributor.author Wellmann, Felix
dc.contributor.author Steinke, Michael
dc.contributor.author Thies, Fabian
dc.contributor.author Bode, Nina
dc.contributor.author Oppermann, Patrick
dc.contributor.author Willke, Benno
dc.contributor.author Overmeyer, Ludger
dc.contributor.author Neumann, Jörg
dc.contributor.author Kracht, Dietmar
dc.contributor.editor Dong, Liang
dc.contributor.editor Carter, Adrian L.
dc.date.accessioned 2020-12-08T15:27:03Z
dc.date.available 2020-12-08T15:27:03Z
dc.date.issued 2019
dc.identifier.citation Wellmann, F.; Steinke, M.; Thies, F.; Bode, N.; Oppermann, P. et al.: Characterization of the monolithic fiber amplifier engineering prototype for the next generation of gravitational wave detectors. In: Proceedings of SPIE 10897 (2019), 1089722. DOI: https://doi.org/10.1117/12.2508532
dc.description.abstract Single-frequency Yb3+ fiber amplifiers operating at 1064 nm are promising candidates to fulfill the challenging requirements for laser sources of the next generation of interferometric gravitational wave detectors. We present the current development progress of a fiber amplifier engineering prototype and compare the optical and thermal performance to the solid-state-laser source of advanced LIGO. The fiber amplifier system consists of two monolithic fiber amplifier stages which currently deliver more than 110 W (functional prototype demonstrated 215 W [9,11]) of output power. The fiber amplifier output beam has one to two orders of magnitude lower relative beam pointing and relative power noise in the lower frequency range of 1 Hz to 100 Hz compared to the solid-state-laser system. It also has a polarization extinction ratio above 21 dB and a TEM00-mode content of more than 97.8 % ±0.6 % at 110 W output power. Besides the optical properties, repair and maintenance procedures are improved by a modular design of the system. Each of the modules can separately be maintained and repaired or easily be replaced by a preassembled module; it therefore minimizes laser downtimes. Another advantage is the lower heat load of approximately 500 W compared to the SSL, which produces more than 4500 W of heat, both at an optical output power of 200 W. The lower heat load simplifies cooling and reduces the complexity of the modules. © 2019 SPIE. eng
dc.language.iso eng
dc.publisher Bellingham, Wash. : SPIE
dc.relation.ispartof Fiber Lasers XVI: Technology and Systems : 4-7 February 2019, San Francisco, California, United States
dc.relation.ispartofseries Proceedings of SPIE 10897 (2019)
dc.rights Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
dc.subject Gravitational wave detection eng
dc.subject Monolithic fiber amplifier eng
dc.subject Single-frequency eng
dc.subject.classification Konferenzschrift ger
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau ger
dc.title Characterization of the monolithic fiber amplifier engineering prototype for the next generation of gravitational wave detectors eng
dc.type BookPart
dc.type Text
dc.relation.essn 1996-756X
dc.relation.isbn 978-1-5106-2436-8
dc.relation.issn 0277-786X
dc.relation.doi https://doi.org/10.1117/12.2508532
dc.bibliographicCitation.volume 10897
dc.bibliographicCitation.firstPage 1089722
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Files in this item

This item appears in the following Collection(s):

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics