A micro-mechanically motivated model for the oxidative ageing of elastomers

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Beurle, Darcy: A micro-mechanically motivated model for the oxidative ageing of elastomers. Hannover : Institut für Baumechanik und Numerische Mechanik, 2020 (Institut für Baumechanik und Numerische Mechanik, Gottfried Wilhelm Leibniz Universität), vi, 114 S. ISBN 978-3-935732-50-5

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/9940

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 424




Kleine Vorschau
Zusammenfassung: 
Oxidative ageing of elastomers is an irreversible process brought about by chemical reactions occurring within the molecular structure of a polymer network. Such reactions are facilitated by oxygen and are characterised by two competing reactions; chain scission and chain cross-linking. On the macro scale, the chain scission reaction can be observed in a stress softening of the material as the supporting polymer chains in the network are broken. In contrast, the chain cross-linking reaction increases the cross-link density to result in an overall stiffening of the material and the complex, deformation history permanent set effect. The scission and cross-linking reactions may not occur at the same rate, leading to an asymmetry in the degrees of stress softening, stiffening and of permanent set.The link between the micro- and macro-scales for the description of oxidative ageing is the main focus of this dissertation. Several models exist in the literature for the modelling of oxidative ageing, but a micro-mechanical basis is missing and they instead rely on a phenomenological approach. Such phenomenological models can produce non-physical results and rely on simple exponential type equations for capturing the oxidative degradation of polymer networks. A micro-mechanical approach has the benefit of gaining deeper insight into the main drivers behind oxidative ageing and involve physically motivated material parameters.Exploiting the statistical mechanical relationship between the shear modulus and the cross-link density, a network dynamics model capturing the oxidative ageing reactions is derived. A distinction is made between active cross-links that can support a load, and inactive cross-links which are unable to support a load. This results in a set of coupled non-linear differential equations describing the rate at which cross-links are created and destroyed. Using the two-network concept, a split of the polymer network is made into primary and secondary networks. Here the primary network is only permitted to decay and the secondary network is created stress-free with respect to the deformation at the time of creation. The mechanical model is based on the well-known micro-sphere model with modifications to include network dynamics.Using the network dynamics model, a novel mapping procedure is introduced to capture the degradation state in terms of a dimensionless parameter. This mapping allows both the primary network to degrade and the continual decay of secondary networks to be captured. Capturing the permanent set effect is arguably the greatest challenge as the permanent set effect arises from the stress-free post-curing and the tension between different stress-free states inside the polymer network. Intermediate configurations are introduced continuously as cross-links are created in a given deformation frame. The pull-back operator allows convenient accumulation of these stresses in the reference configuration through an integral formulation. This allows very efficient computation of the secondary network stress and ensures the material model satisfies axioms of constitutive modelling.Numerical tests and experiments were performed to showcase the strengths of the modelling approach including simple uniaxial tests and finite element simulations. A comparison of the proposed model with the state-of-the-art model demonstrates clear improvements in the modelling fidelity.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: DoctoralThesis
Publikationsstatus: updatedVersion
Erstveröffentlichung: 2020
Die Publikation erscheint in Sammlung(en):Fakultät für Bauingenieurwesen und Geodäsie
Dissertationen

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 258 60,85%
2 image of flag of United States United States 41 9,67%
3 image of flag of China China 32 7,55%
4 image of flag of Australia Australia 26 6,13%
5 image of flag of France France 13 3,07%
6 image of flag of Israel Israel 10 2,36%
7 image of flag of Ireland Ireland 5 1,18%
8 image of flag of United Kingdom United Kingdom 5 1,18%
9 image of flag of India India 3 0,71%
10 image of flag of Austria Austria 3 0,71%
    andere 28 6,60%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.