Robust model reconstruction for intelligent health monitoring of tunnel structures

Download statistics - Document (COUNTER):

Xu, X.; Yang, H.: Robust model reconstruction for intelligent health monitoring of tunnel structures. In: International Journal of Advanced Robotic Systems 17 (2020), Nr. 2. DOI: https://doi.org/10.1177/1729881420910836

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/9907

Selected time period:

year: 
month: 

Sum total of downloads: 1




Thumbnail
Abstract: 
Advanced robotic systems will encounter a rapid breakthrough opportunity and become increasingly important, especially with the aid of the accelerated development of artificial intelligence technology. Nowadays, advanced robotic systems are widely used in various fields. However, the development of artificial intelligence-based robot systems for structural health monitoring of tunnels needs to be further investigated, especially for data modeling and intelligent processing for noises. This research focuses on integrated B-spline approximation with a nonparametric rank method and reveals its advantages of high efficiency and noise resistance for the automatic health monitoring of tunnel structures. Furthermore, the root-mean-square error and time consumption of the rank-based and Huber’s M-estimator methods are compared based on various profiles. The results imply that the rank-based method to model point cloud data has a comparative advantage in the monitoring of tunnel, as well as the large-area structures, which requires high degrees of efficiency and robustness.
License of this version: CC BY 4.0 Unported
Document Type: article
Issue Date: 2020
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 1 100.00%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse